The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the ...The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the properties of Li3V2(PO4)3/C were evaluated by X-ray diffraction(XRD), scanning electron microscope(SEM) and electrochemical performance tests. The SEM images show that smaller size particles are obtained by adding larger and smaller PEGs. The electrochemical cycling of Li3V2(PO4)3/C prepared by both PEG200 and PEG20 k has a high initial discharge capacity of 131.1 mA·h/g at 0.1C during 3.0-4.2 V, and delivers a reversible discharge capacity of 123.6 m A·h/g over 30 cycles, which is better than that of other samples. The improvement in electrochemical performance is caused by its improved lithium ion diffusion coefficient for the macroporous morphology, which is verified by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).展开更多
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two...Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.展开更多
Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming...Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming processes and it is difficult to be simulated accurately with conventional finite element method(CFEM) because it involves solid phase and liquid phase simultaneously.XFEM is becoming more and more popular with the need of solving the discontinuous problem happening in engineering field.The implementation method of XFEM is proposed on Abaqus code by using UEL(user element) with the flowchart.The key is to modify the element stiffness in the proposed method by using UEL on the platform of Abaqus code.In contrast to XFEM used in the simulation of solidification,the geometrical and physical properties of elements were modified at the same time in our method that is beneficial to getting smooth interface transition and precise analysis results.The analysis is simplified significantly with XFEM.展开更多
Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were f...Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.展开更多
The research was carried out for establishing a new reverse phase-HPLC stability indicating method for the quantification of Rucaparib. The experiment was determined on Waters HPLC instrument using 996 photo-diode arr...The research was carried out for establishing a new reverse phase-HPLC stability indicating method for the quantification of Rucaparib. The experiment was determined on Waters HPLC instrument using 996 photo-diode array detector. The separation was done by using symmetry C-18 ODS (25 cm × 0.46 cm internal diameter) 5 μm analytical column containing mobile phase of Phosphate buffer (0.02 M) and methanol [65:35% v/v] adjusted pH to 4.8 by adding dilute ortho phosphoric acid. The method was run at 1 ml·min<sup>-1</sup> at 286 nm detection. The drug was eluted at 5.484 min. After developing the method, it was assured for the intended use by validation which was done according to ICH Q2B guidelines. The analytical parameters checked were linearity, accuracy, repeatability, intermediate precision, limit of detection, limit of quantitation, ruggedness and robustness. It was observed that the response of the detector was linear in the range of 6 - 14 μg/ml with correlation coefficient of 0.999. The results of all the parameters were found to be within the acceptance criteria. The stability indicating assay method was established by using the samples generated by forced degradation process. The forced degradation was carried out by subjecting the drug to acid, alkali, thermal, oxidative and photolytic degradation and the results showed that the degradation products were successfully separated from the drug. Hence, this can be applied perfectly later for the analysis of quality of the rucaparib drug.展开更多
We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps betwe...We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.展开更多
The research was carried out to establish a new reverse phase-HPLC stability indicating method for quantifying Bimatoprost & Timolol in ophthalmic solution. The experiment of Bimatoprost & Timolol in ophthalmi...The research was carried out to establish a new reverse phase-HPLC stability indicating method for quantifying Bimatoprost & Timolol in ophthalmic solution. The experiment of Bimatoprost & Timolol in ophthalmic solution method development was determined on Waters HPLC instrument using a UV Detector. The separation was done by using L11, Zorbex SB phenyl (4.6 mm × 250 mm internal diameter) 5 μm analytical column, containing mobile phase of Phosphate buffer (0.02 M), methanol, and acetonitrile [50:30:20 % v/v]. The method was run at 1 ml·min<sup>-1</sup> at 210 nm for Bimatoprost and 295 nm for Timolol for detection. The drug was eluted at 10.81 min for Bimatoprost and 3.77 min for Timolol. After developing the method, it was assured for the intended use by validation, which was done according to ICH Q2B guidelines. The analytical parameters checked were Specificity/Selectivity, linearity, Range, accuracy, ruggedness, and robustness. It was observed that the response of the detector was linear in the range of 6 - 18 μg/ml with a correlation coefficient of 0.999. The results of all the parameters were found to be within the acceptance criteria. The stability-indicating assay method was established by using the samples generated by the forced degradation process. The forced degradation was carried out by subjecting the drug to acid, alkali, thermal, oxidative, and photolytic degradation, and the results showed that the degradation products were successfully separated from the drug. Hence, this can be applied perfectly later for the quantitative analysis of Bimatoprost 0.3% + Timolol 0.5% Ophthalmic Solution drugs for pharmaceutical use. Currently, there is no official method for Bimatoprost & Timolol combination products in USP or BP. Available research work related to single Bimatoprost or Timolol products was not suitable for testing Bimatoprost and Timolol combination drugs. Additionally, there is no stability-indicating method to test Bimatoprost & Timolol combination products which insist us to do research and develop a new reverse phase-HPLC indicating method which will be faster and more accurate.展开更多
As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,red...As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,reduction–diffusion method was innovatively applied to synthesize rare earth alloy Y_(2)Fe_(17).In order to regulate the electromagnetic parameters of absorbers,the Y_(2)Fe_(17)N_(3-δ)particles were coated with silica(Y_(2)Fe_(17)N_(3-δ)@SiO_(2))and absorbers with different volume fractions were prepared.The relationship between impedance matching,matching thickness,and the strongest reflection loss peak(RLmin)was presented obviously.Compared to the microwave absorption properties of Y_(2)Fe_(17)N_(3-δ)/PU absorber,Y_(2)Fe_(17)N_(3-δ)@SiO_(2)/PU absorbers are more conducive to the realization of microwave absorption material standards which are thin thickness,light weight,strong absorbing intensity,and broad bandwidth.Based on microwave frequency bands,the microwave absorption properties of the absorbers were analyzed and the related parameters were listed.As an important parameter related to perfect matching,reflection factor(√ε_(r)/μ_(r))was discussed combined with microwave amplitude attenuation.According to the origin and mathematical model of bandwidth,the formula of EAB(RL<-10 dB)was derived and simplified.The calculated bandwidths agreed well with experimental results.展开更多
We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-base...We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-based atomic force microscope in ambient conditions, and the stacking particles form Au nanoparticle-aggregated nanowire while the nozzle retracts from the surface. Their mechanical properties with relatively low elastic modulus are in situ investigated by using the same apparatus.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the properties of Li3V2(PO4)3/C were evaluated by X-ray diffraction(XRD), scanning electron microscope(SEM) and electrochemical performance tests. The SEM images show that smaller size particles are obtained by adding larger and smaller PEGs. The electrochemical cycling of Li3V2(PO4)3/C prepared by both PEG200 and PEG20 k has a high initial discharge capacity of 131.1 mA·h/g at 0.1C during 3.0-4.2 V, and delivers a reversible discharge capacity of 123.6 m A·h/g over 30 cycles, which is better than that of other samples. The improvement in electrochemical performance is caused by its improved lithium ion diffusion coefficient for the macroporous morphology, which is verified by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).
基金Project supported by the Talent Fund of the Ministry of Communication of China(No.95050508) the Fund of Western Communication of China(No.200332822047) the Key Science Fund of the Ministry of Communication of China(No.95060233)
文摘Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.
基金Project(50972121) supported by the National Nature Science Foundation of ChinaProject(20080004) supported by the Foundation of Key Laboratory for Advanced Materials Processing Technology,Ministry of Education,China
文摘Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming processes and it is difficult to be simulated accurately with conventional finite element method(CFEM) because it involves solid phase and liquid phase simultaneously.XFEM is becoming more and more popular with the need of solving the discontinuous problem happening in engineering field.The implementation method of XFEM is proposed on Abaqus code by using UEL(user element) with the flowchart.The key is to modify the element stiffness in the proposed method by using UEL on the platform of Abaqus code.In contrast to XFEM used in the simulation of solidification,the geometrical and physical properties of elements were modified at the same time in our method that is beneficial to getting smooth interface transition and precise analysis results.The analysis is simplified significantly with XFEM.
文摘Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here.
文摘The research was carried out for establishing a new reverse phase-HPLC stability indicating method for the quantification of Rucaparib. The experiment was determined on Waters HPLC instrument using 996 photo-diode array detector. The separation was done by using symmetry C-18 ODS (25 cm × 0.46 cm internal diameter) 5 μm analytical column containing mobile phase of Phosphate buffer (0.02 M) and methanol [65:35% v/v] adjusted pH to 4.8 by adding dilute ortho phosphoric acid. The method was run at 1 ml·min<sup>-1</sup> at 286 nm detection. The drug was eluted at 5.484 min. After developing the method, it was assured for the intended use by validation which was done according to ICH Q2B guidelines. The analytical parameters checked were linearity, accuracy, repeatability, intermediate precision, limit of detection, limit of quantitation, ruggedness and robustness. It was observed that the response of the detector was linear in the range of 6 - 14 μg/ml with correlation coefficient of 0.999. The results of all the parameters were found to be within the acceptance criteria. The stability indicating assay method was established by using the samples generated by forced degradation process. The forced degradation was carried out by subjecting the drug to acid, alkali, thermal, oxidative and photolytic degradation and the results showed that the degradation products were successfully separated from the drug. Hence, this can be applied perfectly later for the analysis of quality of the rucaparib drug.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11874080 and 11734002)supported as a Simons Investigator by the Simons Foundation (Grant No. 511064)。
文摘We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.
文摘The research was carried out to establish a new reverse phase-HPLC stability indicating method for quantifying Bimatoprost & Timolol in ophthalmic solution. The experiment of Bimatoprost & Timolol in ophthalmic solution method development was determined on Waters HPLC instrument using a UV Detector. The separation was done by using L11, Zorbex SB phenyl (4.6 mm × 250 mm internal diameter) 5 μm analytical column, containing mobile phase of Phosphate buffer (0.02 M), methanol, and acetonitrile [50:30:20 % v/v]. The method was run at 1 ml·min<sup>-1</sup> at 210 nm for Bimatoprost and 295 nm for Timolol for detection. The drug was eluted at 10.81 min for Bimatoprost and 3.77 min for Timolol. After developing the method, it was assured for the intended use by validation, which was done according to ICH Q2B guidelines. The analytical parameters checked were Specificity/Selectivity, linearity, Range, accuracy, ruggedness, and robustness. It was observed that the response of the detector was linear in the range of 6 - 18 μg/ml with a correlation coefficient of 0.999. The results of all the parameters were found to be within the acceptance criteria. The stability-indicating assay method was established by using the samples generated by the forced degradation process. The forced degradation was carried out by subjecting the drug to acid, alkali, thermal, oxidative, and photolytic degradation, and the results showed that the degradation products were successfully separated from the drug. Hence, this can be applied perfectly later for the quantitative analysis of Bimatoprost 0.3% + Timolol 0.5% Ophthalmic Solution drugs for pharmaceutical use. Currently, there is no official method for Bimatoprost & Timolol combination products in USP or BP. Available research work related to single Bimatoprost or Timolol products was not suitable for testing Bimatoprost and Timolol combination drugs. Additionally, there is no stability-indicating method to test Bimatoprost & Timolol combination products which insist us to do research and develop a new reverse phase-HPLC indicating method which will be faster and more accurate.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3501300)the National Natural Science Foundation of China(Grant No.51731001)the Fund from the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s Key Research and Development Projects。
文摘As concepts closely related to microwave absorption properties,impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms.In this work,reduction–diffusion method was innovatively applied to synthesize rare earth alloy Y_(2)Fe_(17).In order to regulate the electromagnetic parameters of absorbers,the Y_(2)Fe_(17)N_(3-δ)particles were coated with silica(Y_(2)Fe_(17)N_(3-δ)@SiO_(2))and absorbers with different volume fractions were prepared.The relationship between impedance matching,matching thickness,and the strongest reflection loss peak(RLmin)was presented obviously.Compared to the microwave absorption properties of Y_(2)Fe_(17)N_(3-δ)/PU absorber,Y_(2)Fe_(17)N_(3-δ)@SiO_(2)/PU absorbers are more conducive to the realization of microwave absorption material standards which are thin thickness,light weight,strong absorbing intensity,and broad bandwidth.Based on microwave frequency bands,the microwave absorption properties of the absorbers were analyzed and the related parameters were listed.As an important parameter related to perfect matching,reflection factor(√ε_(r)/μ_(r))was discussed combined with microwave amplitude attenuation.According to the origin and mathematical model of bandwidth,the formula of EAB(RL<-10 dB)was derived and simplified.The calculated bandwidths agreed well with experimental results.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 200983512)Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A6A3A03063900)the Brain Korea 21
文摘We fabricate and characterize Au nanoparticle-aggregated nanowires by using the nano meniscus-induced colloidal stacking method. The Au nanoparticle solution ejects with guidance of nanopipette/quartz tuning fork-based atomic force microscope in ambient conditions, and the stacking particles form Au nanoparticle-aggregated nanowire while the nozzle retracts from the surface. Their mechanical properties with relatively low elastic modulus are in situ investigated by using the same apparatus.