This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being dev...This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.展开更多
In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspen...In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO_2–Al_2O_3–B_2O_3(M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al_(20)B_4O_(36), CaAl_2Si_2O_8, and BaAl_2Si_2O_8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.展开更多
The kinetic characteristics of W grain growth operated by diffusion controlled Oswald ripening (DOR) during liquid phase sintering were studied. A liquid phase sintering of W-15wt%Cu was carried out by pushing compa...The kinetic characteristics of W grain growth operated by diffusion controlled Oswald ripening (DOR) during liquid phase sintering were studied. A liquid phase sintering of W-15wt%Cu was carried out by pushing compacts into a furnace at the moment when the temperature increased to 1340℃ for different sintering times. The results show that liquid phase sintering produces the compacts with considerably low relative density and inversely, rather high homogeneity. On the basis of the data extracted from the SEM images, the kinetic equation of W grain growth, G^n = G0^n + kt, is determined in which the grain growth exponent n is 3 and the grain growth rate constant k is 0.15 μm^3/s. The cumulative normalized grain size distributions produced by different sintering times show self-similar. The cumulative distribution function is extracted from the curves by non-linear fitting. In addition, the sintering kinetic characteristics of W-15wt%Cu compacts were also investigated.展开更多
Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scan- ning electron microscopy, the effects of gangue content, gangue type, and gangue size o...Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scan- ning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering mate- dais was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentra- tions proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the forma- tion of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively.展开更多
The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyze...The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyzed by combing Thermochemicdl data base calculation and XRD characterization. The results show that some of constituents in fly ash have reacted with liquid aluminum so that the elemental Si, Fe, Ti as well as some amount of intermetallic compounds occur. The properties of aluminum/fly ash composites have been improved. With the fraction of fly ash increase, the composite density decreases; the hardness and the modulus of the composite increases, and the composite wear resistance are significantly increased. The fly ash reinforced composites represent a sort of low cost product with possible widespread applications in the automotive, small engine, and electromechanical machinery sectors.展开更多
The spark plasma sintering (SPS) was applied to prepare α-Si3 N4 ceramics of different densities with magnesia, silicon dioxide, alumina as the sintering aids. The mechanism of liquid phase sintering (LPS) wus d...The spark plasma sintering (SPS) was applied to prepare α-Si3 N4 ceramics of different densities with magnesia, silicon dioxide, alumina as the sintering aids. The mechanism of liquid phase sintering (LPS) wus discussed and the factors influencing the density of the prepared samples were analyzed. The dielectric constant of sintered samples was tested. The experimental results show that the density can be controlled from 2.48 g/ cm^3 to 3.09 g/ cm^3 while the content of the sintering aids and the sintering temperature alter and the dielectric constant is closely dependent on the density of obtained samples.展开更多
The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size o...The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size of 3 μm) were investigated respectively. Commercial tungsten powders (original tungsten powders) were mechanically milled in a high-energy attritor mill for 35 h. Ultra-fine tungsten powders and commercial Ni, Fe powders were consolidated into green compacts by using CIP method and liquid-phase sintering at 1 465 ℃ for 30 min in the dissociated ammonia atmosphere. Liquid-phase sintered tungsten heavy alloys using ultra-fine tungsten powders exhibit full densification (above 99% in relative density) and higher strength and elongation compared with conventional liquid-phase sintered alloys using original tungsten powders due to lower sintering temperature at 1 465 ℃ and short sintering time. The mechanical properties of sintered tungsten heavy alloy are found to be mainly dependent on the particles size of raw tungsten powders and liquid-phase sintering temperature.展开更多
Amorphous nano-sized silicon nitride powders were sintered by liquid phase sintering. The influences of the additives of Y2O3 and Al2O3 prepared by two different ways, the polyacrylamide gel method and the precipitati...Amorphous nano-sized silicon nitride powders were sintered by liquid phase sintering. The influences of the additives of Y2O3 and Al2O3 prepared by two different ways, the polyacrylamide gel method and the precipitation method, were investigated. The grain sizes of the additives prepared by the first method were finer than those of prepared by the latter method. When sintered at the same temperature, 1700 ℃, the average grain size of the silicon nitride is 0.3 um for the sample with the former additives, which is much finer than the one with the latter additives. The density of additives prepared by precipitation method is clearly lower than those of prepared by polyacrylamide gel method.展开更多
Three observation methods were used to investigate the existing form and the behavior of rare earth during the sintering process of high activity mischmetal (RE, with lanthanum and cerium) doped WC-8%Co-0.048%RE(ma...Three observation methods were used to investigate the existing form and the behavior of rare earth during the sintering process of high activity mischmetal (RE, with lanthanum and cerium) doped WC-8%Co-0.048%RE(mass fraction) alloy with low carbon-containing level by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), considering the fact that the addition amount of rare earth in the alloy is very minute. The directional migration process and mechanism of cerium were discussed. First, the sinter skin (surface) is observed. oxide on the sinter skin, and lanthanum in these cerium observed, and lanthanum containing phase/micro-zone in It is shown that there exists a dispersedly distributed cerium containing enrichment positions is very minute. Secondly, the polished section is the alloy is identified. Finally, based on the fact that the fracture of cemented carbide is resulted from the heterogeneous phase or other defects within the microstructure, the fracture surface is observed and cerium containing phase/micro-zone in the fracture source approximately 260 μm from the surface is identified. These combined observations reveal adequately the fact that lanthanum and cerium get separated and cerium predominantly migrates towards the surface during the sintering process.展开更多
Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure...Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.展开更多
A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting o...A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting of the binder (CuSn) but non-melting of the cores of structural metal (Cu) proves to be a feasible mechanism for laser sintering of this powder system. The microstructural evolution of the sintered powder with variation of laser processing parameters was presented. High sintering activities and sound densification response were obtained by optimizing the laser powers and scan speeds. Using a high laser power accompanied by a high scan speed gives rise to balling effect. At a high laser power with a slow scan speed the sintering mechanism may change into complete melting/solidification, which decreases the obtainable sintered density. The role of additive phosphorus in the laser sintering process is addressed. Phosphorus can act as a fluxing agent and has a preferential reaction with oxygen to form phosphatic slag, protecting the Cu particles from oxidation. The phosphatic slag shows a concentration along grain boundaries due to its light mass as well as the short thermal cycle of SLS.展开更多
The dynamic behaviour of transient liquid phase during sintering 5wt% Al-Cu alloy compacts with green density of 7.56g/cn ̄3 is observed by means of high temperature metallographic microscopy. The structures and preci...The dynamic behaviour of transient liquid phase during sintering 5wt% Al-Cu alloy compacts with green density of 7.56g/cn ̄3 is observed by means of high temperature metallographic microscopy. The structures and precipitating order of the phases are identified by means of DTA, TEM and composion analysis at the definite point and phase diagram. The results show that little Al-rich liquid phase resulting from eutectic reaction flows into the capillaries in Cu powder, because the peritectic reactions exhausts the liquid in high density compact,the composition homogenization needs longer sintering time. The remainder γ2-phase is discovered at place of the neck of sintered Cu particle and has a crystallographic relationship of (111)_(Cu)∥(033)_γ_2 after alloy is sintered at 900 ℃for 3h.展开更多
A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exh...A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.展开更多
文摘This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(No.A0920502051513-5)
文摘In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO_2–Al_2O_3–B_2O_3(M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al_(20)B_4O_(36), CaAl_2Si_2O_8, and BaAl_2Si_2O_8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50174007).
文摘The kinetic characteristics of W grain growth operated by diffusion controlled Oswald ripening (DOR) during liquid phase sintering were studied. A liquid phase sintering of W-15wt%Cu was carried out by pushing compacts into a furnace at the moment when the temperature increased to 1340℃ for different sintering times. The results show that liquid phase sintering produces the compacts with considerably low relative density and inversely, rather high homogeneity. On the basis of the data extracted from the SEM images, the kinetic equation of W grain growth, G^n = G0^n + kt, is determined in which the grain growth exponent n is 3 and the grain growth rate constant k is 0.15 μm^3/s. The cumulative normalized grain size distributions produced by different sintering times show self-similar. The cumulative distribution function is extracted from the curves by non-linear fitting. In addition, the sintering kinetic characteristics of W-15wt%Cu compacts were also investigated.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(No.FRF-MP-12-003B)
文摘Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scan- ning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering mate- dais was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentra- tions proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the forma- tion of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively.
文摘The Al/fly ash composites are fabricated by liquid reactive sintering P/M process with fly ash particles as intensifying phases. The reactivity and newly formed phases during liquid sintering process have been analyzed by combing Thermochemicdl data base calculation and XRD characterization. The results show that some of constituents in fly ash have reacted with liquid aluminum so that the elemental Si, Fe, Ti as well as some amount of intermetallic compounds occur. The properties of aluminum/fly ash composites have been improved. With the fraction of fly ash increase, the composite density decreases; the hardness and the modulus of the composite increases, and the composite wear resistance are significantly increased. The fly ash reinforced composites represent a sort of low cost product with possible widespread applications in the automotive, small engine, and electromechanical machinery sectors.
文摘The spark plasma sintering (SPS) was applied to prepare α-Si3 N4 ceramics of different densities with magnesia, silicon dioxide, alumina as the sintering aids. The mechanism of liquid phase sintering (LPS) wus discussed and the factors influencing the density of the prepared samples were analyzed. The dielectric constant of sintered samples was tested. The experimental results show that the density can be controlled from 2.48 g/ cm^3 to 3.09 g/ cm^3 while the content of the sintering aids and the sintering temperature alter and the dielectric constant is closely dependent on the density of obtained samples.
文摘The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size of 3 μm) were investigated respectively. Commercial tungsten powders (original tungsten powders) were mechanically milled in a high-energy attritor mill for 35 h. Ultra-fine tungsten powders and commercial Ni, Fe powders were consolidated into green compacts by using CIP method and liquid-phase sintering at 1 465 ℃ for 30 min in the dissociated ammonia atmosphere. Liquid-phase sintered tungsten heavy alloys using ultra-fine tungsten powders exhibit full densification (above 99% in relative density) and higher strength and elongation compared with conventional liquid-phase sintered alloys using original tungsten powders due to lower sintering temperature at 1 465 ℃ and short sintering time. The mechanical properties of sintered tungsten heavy alloy are found to be mainly dependent on the particles size of raw tungsten powders and liquid-phase sintering temperature.
基金Funded by the National Postdoctoral Foundation of China(No.20060400787)
文摘Amorphous nano-sized silicon nitride powders were sintered by liquid phase sintering. The influences of the additives of Y2O3 and Al2O3 prepared by two different ways, the polyacrylamide gel method and the precipitation method, were investigated. The grain sizes of the additives prepared by the first method were finer than those of prepared by the latter method. When sintered at the same temperature, 1700 ℃, the average grain size of the silicon nitride is 0.3 um for the sample with the former additives, which is much finer than the one with the latter additives. The density of additives prepared by precipitation method is clearly lower than those of prepared by polyacrylamide gel method.
基金Project(50574104) supported by the National Natural Science Foundation of China
文摘Three observation methods were used to investigate the existing form and the behavior of rare earth during the sintering process of high activity mischmetal (RE, with lanthanum and cerium) doped WC-8%Co-0.048%RE(mass fraction) alloy with low carbon-containing level by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), considering the fact that the addition amount of rare earth in the alloy is very minute. The directional migration process and mechanism of cerium were discussed. First, the sinter skin (surface) is observed. oxide on the sinter skin, and lanthanum in these cerium observed, and lanthanum containing phase/micro-zone in It is shown that there exists a dispersedly distributed cerium containing enrichment positions is very minute. Secondly, the polished section is the alloy is identified. Finally, based on the fact that the fracture of cemented carbide is resulted from the heterogeneous phase or other defects within the microstructure, the fracture surface is observed and cerium containing phase/micro-zone in the fracture source approximately 260 μm from the surface is identified. These combined observations reveal adequately the fact that lanthanum and cerium get separated and cerium predominantly migrates towards the surface during the sintering process.
基金Project(NRF-2012R1A1A1012983) supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT&Future PlanningProject supported by the New Faculty Research Fund of Ajou University,Korea
文摘Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.
文摘A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting of the binder (CuSn) but non-melting of the cores of structural metal (Cu) proves to be a feasible mechanism for laser sintering of this powder system. The microstructural evolution of the sintered powder with variation of laser processing parameters was presented. High sintering activities and sound densification response were obtained by optimizing the laser powers and scan speeds. Using a high laser power accompanied by a high scan speed gives rise to balling effect. At a high laser power with a slow scan speed the sintering mechanism may change into complete melting/solidification, which decreases the obtainable sintered density. The role of additive phosphorus in the laser sintering process is addressed. Phosphorus can act as a fluxing agent and has a preferential reaction with oxygen to form phosphatic slag, protecting the Cu particles from oxidation. The phosphatic slag shows a concentration along grain boundaries due to its light mass as well as the short thermal cycle of SLS.
文摘The dynamic behaviour of transient liquid phase during sintering 5wt% Al-Cu alloy compacts with green density of 7.56g/cn ̄3 is observed by means of high temperature metallographic microscopy. The structures and precipitating order of the phases are identified by means of DTA, TEM and composion analysis at the definite point and phase diagram. The results show that little Al-rich liquid phase resulting from eutectic reaction flows into the capillaries in Cu powder, because the peritectic reactions exhausts the liquid in high density compact,the composition homogenization needs longer sintering time. The remainder γ2-phase is discovered at place of the neck of sintered Cu particle and has a crystallographic relationship of (111)_(Cu)∥(033)_γ_2 after alloy is sintered at 900 ℃for 3h.
基金financially supported by the National Natural Science Foundation of China (No. 51402016)the Fundamental Research Funds for the Central Universities (No. FRF-TP-15-008A2)
文摘A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.