The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM)...The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), frequency dependence of permeability and metallographical microscope were used to investigate the crystal structure, surface topography and magnetic properties of the powders and the sintering samples. The experimental results demonstrate that the precursor powders have formed a pure phase cubic spinel MnxZn1-xfe2O4 while in the reactor and show definite magnetism, which can solve the difficult issue in washing process effectively. When calcined beneath 450 ℃, the powders have intact crystal form and the crystallite size is less than 20 nm. Comparison tests of sintering temperatures show that 1 300 ℃ is the ideal sintering temperature for Mn-Zn ferrites prepared by using the chemical co-precipitation.展开更多
Sulfhydryl magnetic biological bamboo charcoal nanocomposite(BBC@nFe-SH)was prepared by chemical co-precipitation method for the robust capture of As(Ⅲ)from aqueous solutions.The novel BBC@nFe-SH shows favorable magn...Sulfhydryl magnetic biological bamboo charcoal nanocomposite(BBC@nFe-SH)was prepared by chemical co-precipitation method for the robust capture of As(Ⅲ)from aqueous solutions.The novel BBC@nFe-SH shows favorable magnetic field strength(83376 A/m),which enables BBC@nFe-SH to be quickly recovered from aqueous solution.The maximum As(Ⅲ)adsorption capacity is as high as 98.63 mg/g at pH 5.0 and 40°C,reaching reaction equilibrium within 120 min.Various characterizations(e.g.,SEM,FTIR,VSM and XPS)suggest that As(Ⅲ)prefers to coordinate with surface oxygen groups bonded to the surface.BBC@nFe-SH displayed high stability and recyclability throughout the removal process,which could be easily activated by 1 mol/L NaOH after usage.Thus,the novel BBC@nFe-SH has promising applications for As(Ⅲ)treatment.展开更多
To address the serious pollution of heavy metals in AMD,the difficulty and the high cost of treatment,Fe_(3)O_(4)-L was prepared by the chemical co-precipitation method.Based on the single-factor and RSM,the effects o...To address the serious pollution of heavy metals in AMD,the difficulty and the high cost of treatment,Fe_(3)O_(4)-L was prepared by the chemical co-precipitation method.Based on the single-factor and RSM,the effects of particle size,total Fe concentration,the molar ratio of Fe^(2+)to Fe^(3+)and water bath temperature on the removal of AMD by Fe_(3)O_(4)-L prepared by chemical co-precipitation method were analyzed.Static adsorption experiments were conducted on Cu^(2+),Zn^(2+)and Pb^(2+)using Fe_(3)O_(4)-L prepared under optimal conditions as adsorbents.The adsorption properties and mechanisms were analyzed by combining SEM-EDS,XRD and FTIR for characterization.The study showed that the effects of particle size,total Fe concentration and the molar ratio of Fe^(2+)to Fe^(3+)are larger.Obtained by response surface optimization analysis,the optimum conditions for the preparation of Fe_(3)O_(4)-L were a particle size of 250 mesh,a total Fe concentration of 0.5 mol/L,and a molar ratio of Fe^(2+)to Fe^(3+)of 1:2.Under these conditions,the removal rates of Cu^(2+),Zn^(2+),and Pb^(2+)were 94.52%,88.49%,and 96.69%respectively.The adsorption of Cu^(2+),Zn^(2+)and Pb^(2+)by Fe_(3)O_(4)-L prepared under optimal conditions reached equilibrium at 180 min,with removal rates of 99.99%,85.27%,and 97.48%,respectively.The adsorption reaction of Fe_(3)O_(4)-L for Cu^(2+)and Zn^(2+)is endothermic,while that for Pb^(2+)is exothermic.Fe_(3)O_(4)-L can still maintain a high adsorption capacity after five cycles of adsorption-desorption experiments.Cu^(2+),Zn^(2+)and Pb^(2+)mainly exist as CuFe_(2)O_(4),Zn(OH)2,ZnFe_(2)O_(4)and PbS after being adsorbed by Fe_(3)O_(4)-L,which is the result of the combination of physical diffusion,ion exchange and surface complexation reaction.展开更多
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate)....Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.展开更多
The remarkable ramping of record power conversion efficiencies in perovskite solar cells(PSCs) has stimulated the growth of this technology towards commercialization. However, there remain challenges and opportunities...The remarkable ramping of record power conversion efficiencies in perovskite solar cells(PSCs) has stimulated the growth of this technology towards commercialization. However, there remain challenges and opportunities for further improving their efficiency and stability. Featuring the variety of functional group in the constituting ions, ionic liquids(ILs) exhibit versatile properties and functions that can be leveraged to the development of improved PSCs. Herein with a systematic review on the recent progress in the application of ILs to PSCs, we show that based on the different roles of ILs in the film and device settings, IL can facilitate the thin-film synthesis of perovskites, improve the properties of chargetransport layers, and ameliorate the interfacial energetics at device interfaces. In particular, the ILsperovskite interactions of two different types(Lewis acid-base interaction and hydrogen bonding) are the essential chemistries underpinning observed efficiency and stability improvements in PSCs, which represent a vast research paradigm in the field of energy chemistry.展开更多
Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier...Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier and improve the process efficiency.In this paper,based on Gibbs minimum free energy method,the thermodynamic characteristics of biomass liquid chemical looping gasification were studied.Cellulose and lignin,the main components of biomass,were taken as the research objects.Bismuth oxide and antimony oxide were selected as liquid oxygen carriers.The results showed that when the temperature increased from 600℃to 900℃,the output of H_(2)and CO in the products of cellulose gasification increased from 0.5 and 0.3 kmol to 1.3 and 2.6 kmol respectively.Different ratios of oxygen carriers to gasification raw materials had the best molar ratio.The addition of steam in the system was beneficial to the increase of H_(2)content and the increase of H_(2)/CO molar ratio.Bi_(2)O_(3)and Sb_(2)O_(3)with different mass ratios were used as mixed oxygen carriers.The simulation results showed that the gasification temperature of biomass with different mixed oxygen carriers had the same equilibrium trend products.It could be seen from the results of product distribution that the influence of the mixing ratio of Bi_(2)O_(3)and Sb_(2)O_(3)on gas product distribution could be neglected.These results could provide simulation reference and data basis for subsequent research on liquid chemical looping gasification.展开更多
This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is conside...This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is considered. The flow generation is due to the bidirectional stretching of sheet. The combined phenomenon of heat and mass transport is accounted. The Cattaneo-Christov model of heat and mass diffusion is used to develop the expressions of energy and mass species. The first-order chemical reaction term in the mass species equation is considered. The boundary layer assumptions lead to the governing mathematical model. The homotopic simulation is adopted to visualize the results of the dimensionless flow equations. The graphs of velocities, temperature, and concentration show the effects of different arising parameters. A numerical benchmark is presented to visualize the convergent values of the computed results. The results show that the concentration and temperature fields are decayed for the Cattaneo^Christov theory of heat and mass diffusion.展开更多
[Objectives] To study the chemical components and relative content of Achyranthes bidentata leaves and provide a scientific basis for further development and utilization of A. bidentata leaves.[Methods] The chemical c...[Objectives] To study the chemical components and relative content of Achyranthes bidentata leaves and provide a scientific basis for further development and utilization of A. bidentata leaves.[Methods] The chemical components of A. bidentata leaves were rapidly analyzed using the ultra high performance liquid chromatography-time of flight-high resolution mass spectrometry (UHPLC-TOF-MS).[Results] Thirty eight chemical compounds were identified in samples of A. bidentata leaves collected from Wen County of Henan Province, in which seven chemical compounds had the relative content higher than 5%, linoleic acid reached 25.7% and inokosterone A reached 13.8%.[Conclusions] A. bidentata leaves contain many kinds of chemical compounds. This study is expected to provide a certain basis for further extraction of linoleic acid and inokosterone A.展开更多
Apostichopus japonicus Selenka is an ideal tonic food that is used traditionally in many Asian countries, and it contains many bioactive substances, such as antioxidant, antimicrobial, and anticancer materials. To con...Apostichopus japonicus Selenka is an ideal tonic food that is used traditionally in many Asian countries, and it contains many bioactive substances, such as antioxidant, antimicrobial, and anticancer materials. To convert waste liquid generated during production into a useful resource, extract from waste liquid was isolated by column chromatography and studied by the pyrogallol autoxidation and 1,10-phenanthroline-Fe^2+ oxidation methods. Results show that the extract scavenged about 91% of the superoxide anion radical at a concentration of 1.4 mg/mL and 24% of the hydroxyl radical at 3.3 mg/mL. Four compounds were isolated and identified from the extract: 2,4-dihydroxy-5-methyl-1,3-azine; 2,4-dihydroxy- 1,3-diazine; 3-O-β-D-quinovopranosyl-(1→2)-4-O-sodium sulfate-β-D-xylopranosyl]-holosta-9(11)-ene313,12β,17α-triol; and 24-ethyl-5α-cholesta-7-ene-3β-O-β-D-xylopyranoside. All of these compounds are known in A. japonicus, and were found in the waste liquid for the first time.展开更多
Ionic liquids(ILs)are known as green solvents,and have been widely used in the dissolution and transformation of biopolymers,the extraction of bioactive compounds and metal ions,and the capture of SO2 or CO2.However,l...Ionic liquids(ILs)are known as green solvents,and have been widely used in the dissolution and transformation of biopolymers,the extraction of bioactive compounds and metal ions,and the capture of SO2 or CO2.However,less attention was given to the separation of bio-based chemicals,such as diols and organic acids.Bio-based chemicals can be efficiently separated by organic solvent-based salting-out extraction(SOE)from fermentation broths,while organic solvents are normally unfriendly to environment and process safety in commercialized production due to their toxicity or/and flammability.In recent years,the IL-based SOE system has been explored in the separation of bio-based chemicals as an alternative of organic solvent-based SOE system.In this review,the progress of IL-based SOE of biobased chemicals has been summarized,including the effect of ILs structure on the formation of aqueous two phases,and the influences of ILs structure and concentration,temperature and pH on the partition behaviors of target products and ILs as well as removal of impurities.Most of bio-based chemicals could be distributed into the IL-rich phase with high recovery,while the partition behaviors of bio-based chemicals are sometimes different from that in organic solvent-based SOE systems.Although the results of ILbased SOE are promising,further studies are still required in the increased selectivity of target products over by-products,recovery and recycling of ILs,and the separation between ILs and bio-based chemicals.Additionally,three kinds of integrated bioprocesses would be developed on basis of utilization of ILs as extractant for SOE,catalyst for condensation reaction and solvent for pretreatment of lignocellulose.展开更多
Quantum chemical calculation was used to estimate the reduction potentials of 25 organic cations and the oxidation potentials of 11 anions.This information was used to select promising cations and anions for the prepa...Quantum chemical calculation was used to estimate the reduction potentials of 25 organic cations and the oxidation potentials of 11 anions.This information was used to select promising cations and anions for the preparation of ionic liquids as green electrolytes for electrodeposition of active metals.The reasonable linear correlations between the lowest unoccupied molecular orbital(LUMO)energies and the reduction potentials of cations,and the linear relationships between the oxidation potentials and the highest occupied molecular orbital(HOMO)energies of anions were obtained.The orders of electrochemical stability for cations and anions being obtained agree well with the experimental measurements.The suitable ionic liquids with sufficiently wide electrochemical windows for electrodeposition of active metals are suggested to be[Emim]NTf2,[Bmim]NTf2,[Bmim]BF4, [Bmim]PF6,[Bmim]CTf3,[Emim]BF4,[Emim]PF6,[Emim]CTf3..展开更多
Nano particles lanthanum modified lead titanate (PLT) thin films are grown on Pt/Ti/SiO 2/Si substrate by liquid source misted chemical deposition (LSMCD). PLT films are deposited for 4-8 times, and then annealed at v...Nano particles lanthanum modified lead titanate (PLT) thin films are grown on Pt/Ti/SiO 2/Si substrate by liquid source misted chemical deposition (LSMCD). PLT films are deposited for 4-8 times, and then annealed at various temperature. XRD and SEM show that the prepared films have good crystallization behavior and perovskite structure. The crystallite is about 60 nm. The deposition speed is 3 nm/min. This deposition method can exactly control stoichiometry ratios, doping concentration ratio and thickness of PLT thin films. The best annealing process is to bake at 300 ℃ for 10 min and anneal at 600 ℃ for 1 h.展开更多
Occupational health management of liquid chemical transport wharf is still in its infancy,to grasp the occupational health status of employees in the industry and improve the occupational health management level of em...Occupational health management of liquid chemical transport wharf is still in its infancy,to grasp the occupational health status of employees in the industry and improve the occupational health management level of employees,taking the liquid chemical transport wharf of an enterprise as the investigation object,according to the relevant domestic occupations.Hygiene standards,using the combination of on-site occupational hygiene survey and workplace occupational hazard factors detection,identify the occupational hazard factors of the wharf and detect the degree of hazard.The survey results show that the overall occupational health of the wharf is basically good,but the noise index is slightly exceeded.It is suggested to further improve the occupational health management level of the wharf by improving the protection technology and strengthening the administrative management.展开更多
Based on the physical chemistry principle, this paper proposes that the surface adsorption catalytic mechanism of HF is the key to dissolving the oscillation of the CaF\-2\|HCl\|H\-2O solid\|liquid reaction system. Me...Based on the physical chemistry principle, this paper proposes that the surface adsorption catalytic mechanism of HF is the key to dissolving the oscillation of the CaF\-2\|HCl\|H\-2O solid\|liquid reaction system. Meanwhile the dynamical model of this system has been established in order to study its non\|linear dynamical genesis. Although this mathematics model is based on CSTR reaction apparatus, it is applicable to the foliate flow reaction apparatus, too.展开更多
This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the...This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.展开更多
An analysis system of informational uncertainties for accidental risk assessment of chemicals is introduced. Statistical test methods and fuzzy sets method can do the quantitative analysis of the input parameters. The...An analysis system of informational uncertainties for accidental risk assessment of chemicals is introduced. Statistical test methods and fuzzy sets method can do the quantitative analysis of the input parameters. The uncerainties of the model can be used by quantitative compared method for the leakage accidents of chemicals. The estimation of the leaking time is important for discussing accidental source term. The uncertain analyses of the release accident for pipeline gas (CO) liquid chlorine and liquid propane gas (LPG) have been discussed.展开更多
The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has f...The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs,simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date.Herein,two novel types of graphene hybrid fibers,namely ferroferric oxide dots(FODs)@GF and N-doped carbon polyhedrons(NCPs)@GF,have been proposed via a simple and efficient chemical reduction-induced fabrication.Synergistically coupling the electroactive units(FODs and NCPs)with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity,high flexibility and structural integrity.The resultant FODs@GF and NCPs@GF hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors,including large volumetric specific capacitance,good rate capability,as well as favorable electrochemical kinetics in ionic liquid electrolyte.Based on such two linear electrodes and ionogel electrolyte,a highperformance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density(26.9 mW·cm^(-3)),volumetric power density(4900 mW·cm^(-3))and strong durability over 10,000 cycles under straight/bending states.Furthermore,the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics.展开更多
The health-promoting properties and chemical profiles of 30 Jew’s ear mushroom varieties were investigated. The antioxidant properties were determined by ferric reducing antioxidant power(FRAP), 1,1-diphenyl-2-picryl...The health-promoting properties and chemical profiles of 30 Jew’s ear mushroom varieties were investigated. The antioxidant properties were determined by ferric reducing antioxidant power(FRAP), 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging, 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) free radical scavenging, and metal chelating ability(MCA) assays, while phenolic profiles were determined by total phenol content(TPC) and total flavonoid content(TFC) colorimetric assays. Total carbohydrate, β-glucan, and melanin contents were determined by colorimetric methods. 5’-Nucleotides, vitamin D_(2), ergosterol, and ergothioneine contents were determined by high performance liquid chromatography(HPLC). Anti-inflammation activities of Jew’s ear were evaluated by the colorimetric protease inhibitory method. The results showed that Jew’s ear mushrooms possessed substantial phenolics and antioxidant properties. All the Jew’s ear varieties contain high amount of total carbohydrate, β-glucan, reducing sugar, melanin, pectin, vitamin D2, ergosterol, and ergothioneine. The current findings could provide scientific information for breeders to nurture desired varieties and for food industry to develop new health promoting products.展开更多
Nanocapsules (NC) of antioxidant rich fraction of roasted <span>Moringa </span>leaves were prepared using emulsion coacervation technique with alginate (ALG) and/or chitosan (CTS) as biopolymers. NC were c...Nanocapsules (NC) of antioxidant rich fraction of roasted <span>Moringa </span>leaves were prepared using emulsion coacervation technique with alginate (ALG) and/or chitosan (CTS) as biopolymers. NC were characterized based on particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE) and loading capacity (LC). Substituting CTS with ALG in NC caused a reduction in particle size and PDI, and enhanced EE. Mean particle size dropped from 1209 nm in 1:3 to 413 nm in 3:1 ALG/CTS-NC;PDI decreased from 0.9% to 0.2% and zeta potential from </span></span><span><span><span style="font-family:"">-</span></span></span><span><span><span style="font-family:"">5.4 to </span></span></span><span><span><span style="font-family:"">-</span></span></span><span><span><span style="font-family:"">28.1 mV. </span></span></span><span><span><span style="font-family:"">The </span></span></span><span><span><span style="font-family:"">highest EE (87.6%) and LC (13%) were obtained with ALG-CTS-NC (3:1). ALG-NC were spherical while both CTS and ALG-CTS-NC were ovoid. ALG and ALG-CTS-NC were oil/water emulsions while CTS-NC formed water/oil emulsions. 60% and 70% of bioactives in ALG-CTS-NC (3:1) were released in simulated gastric and intestinal fluids respectively after 400 min. Release of antioxidants from NC is concentration-dependent (First order model) and involves simultaneously diffusion (Higuchi model), swelling (korsmeyer-Peppas model) and erosion (Hixson-Crowell model) mechanisms.展开更多
Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109....Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51162019 and 51462019)
文摘The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), frequency dependence of permeability and metallographical microscope were used to investigate the crystal structure, surface topography and magnetic properties of the powders and the sintering samples. The experimental results demonstrate that the precursor powders have formed a pure phase cubic spinel MnxZn1-xfe2O4 while in the reactor and show definite magnetism, which can solve the difficult issue in washing process effectively. When calcined beneath 450 ℃, the powders have intact crystal form and the crystallite size is less than 20 nm. Comparison tests of sintering temperatures show that 1 300 ℃ is the ideal sintering temperature for Mn-Zn ferrites prepared by using the chemical co-precipitation.
基金financial support from the Key Research and Development Program of Hunan Province,China (No.2021GK4059)。
文摘Sulfhydryl magnetic biological bamboo charcoal nanocomposite(BBC@nFe-SH)was prepared by chemical co-precipitation method for the robust capture of As(Ⅲ)from aqueous solutions.The novel BBC@nFe-SH shows favorable magnetic field strength(83376 A/m),which enables BBC@nFe-SH to be quickly recovered from aqueous solution.The maximum As(Ⅲ)adsorption capacity is as high as 98.63 mg/g at pH 5.0 and 40°C,reaching reaction equilibrium within 120 min.Various characterizations(e.g.,SEM,FTIR,VSM and XPS)suggest that As(Ⅲ)prefers to coordinate with surface oxygen groups bonded to the surface.BBC@nFe-SH displayed high stability and recyclability throughout the removal process,which could be easily activated by 1 mol/L NaOH after usage.Thus,the novel BBC@nFe-SH has promising applications for As(Ⅲ)treatment.
基金This work was supported by the National Natural Science Foundation of China(41672247)Liaoning Province’s“Program for Promoting Liaoning Talents”(XLYC1807159)+1 种基金the Discipline Innovation Team of Liaoning Technical University(LNTU20TD-21)the Liaoning Provincial Department of Education(LJKZ0324).
文摘To address the serious pollution of heavy metals in AMD,the difficulty and the high cost of treatment,Fe_(3)O_(4)-L was prepared by the chemical co-precipitation method.Based on the single-factor and RSM,the effects of particle size,total Fe concentration,the molar ratio of Fe^(2+)to Fe^(3+)and water bath temperature on the removal of AMD by Fe_(3)O_(4)-L prepared by chemical co-precipitation method were analyzed.Static adsorption experiments were conducted on Cu^(2+),Zn^(2+)and Pb^(2+)using Fe_(3)O_(4)-L prepared under optimal conditions as adsorbents.The adsorption properties and mechanisms were analyzed by combining SEM-EDS,XRD and FTIR for characterization.The study showed that the effects of particle size,total Fe concentration and the molar ratio of Fe^(2+)to Fe^(3+)are larger.Obtained by response surface optimization analysis,the optimum conditions for the preparation of Fe_(3)O_(4)-L were a particle size of 250 mesh,a total Fe concentration of 0.5 mol/L,and a molar ratio of Fe^(2+)to Fe^(3+)of 1:2.Under these conditions,the removal rates of Cu^(2+),Zn^(2+),and Pb^(2+)were 94.52%,88.49%,and 96.69%respectively.The adsorption of Cu^(2+),Zn^(2+)and Pb^(2+)by Fe_(3)O_(4)-L prepared under optimal conditions reached equilibrium at 180 min,with removal rates of 99.99%,85.27%,and 97.48%,respectively.The adsorption reaction of Fe_(3)O_(4)-L for Cu^(2+)and Zn^(2+)is endothermic,while that for Pb^(2+)is exothermic.Fe_(3)O_(4)-L can still maintain a high adsorption capacity after five cycles of adsorption-desorption experiments.Cu^(2+),Zn^(2+)and Pb^(2+)mainly exist as CuFe_(2)O_(4),Zn(OH)2,ZnFe_(2)O_(4)and PbS after being adsorbed by Fe_(3)O_(4)-L,which is the result of the combination of physical diffusion,ion exchange and surface complexation reaction.
基金Supported by the Key Natural Science Foundation for Universities of Jiangsu Province(06KJA53012) the National Natural Science Foundation of China(20776069 20976084)
文摘Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.
基金financial support from the Taishan Scholars Project of Shandong Province (201909121)the start-up grants, Initiation Grant - Faculty Niche Research Areas (IG-FNRA) 2020/21 and Interdisciplinary Matching Scheme 2020/21 of the Hong Kong Baptist University (HKBU) and the Early Career Scheme (22300221) from the Hong Kong Research Grant Councilthe support of the Hong Kong Ph D Fellowship Scheme。
文摘The remarkable ramping of record power conversion efficiencies in perovskite solar cells(PSCs) has stimulated the growth of this technology towards commercialization. However, there remain challenges and opportunities for further improving their efficiency and stability. Featuring the variety of functional group in the constituting ions, ionic liquids(ILs) exhibit versatile properties and functions that can be leveraged to the development of improved PSCs. Herein with a systematic review on the recent progress in the application of ILs to PSCs, we show that based on the different roles of ILs in the film and device settings, IL can facilitate the thin-film synthesis of perovskites, improve the properties of chargetransport layers, and ameliorate the interfacial energetics at device interfaces. In particular, the ILsperovskite interactions of two different types(Lewis acid-base interaction and hydrogen bonding) are the essential chemistries underpinning observed efficiency and stability improvements in PSCs, which represent a vast research paradigm in the field of energy chemistry.
基金support of the National Natural Science Foundation of China(22038011,51976168)the K.C.Wong Education Foundation+3 种基金China Postdoctoral Science Foundation(2019M653626)Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-06)the Promotion Plan for Young People of Shaanxi Association for Science and Technology(20180402)the Technology Foundation for Selected Overseas Chinese Scholar in Shaanxi Province(2018015)。
文摘Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier and improve the process efficiency.In this paper,based on Gibbs minimum free energy method,the thermodynamic characteristics of biomass liquid chemical looping gasification were studied.Cellulose and lignin,the main components of biomass,were taken as the research objects.Bismuth oxide and antimony oxide were selected as liquid oxygen carriers.The results showed that when the temperature increased from 600℃to 900℃,the output of H_(2)and CO in the products of cellulose gasification increased from 0.5 and 0.3 kmol to 1.3 and 2.6 kmol respectively.Different ratios of oxygen carriers to gasification raw materials had the best molar ratio.The addition of steam in the system was beneficial to the increase of H_(2)content and the increase of H_(2)/CO molar ratio.Bi_(2)O_(3)and Sb_(2)O_(3)with different mass ratios were used as mixed oxygen carriers.The simulation results showed that the gasification temperature of biomass with different mixed oxygen carriers had the same equilibrium trend products.It could be seen from the results of product distribution that the influence of the mixing ratio of Bi_(2)O_(3)and Sb_(2)O_(3)on gas product distribution could be neglected.These results could provide simulation reference and data basis for subsequent research on liquid chemical looping gasification.
文摘This research focuses on the Cattaneo-Christov theory of heat and mass flux for a three-dimensional Maxwell liquid towards a moving surface. An incompressible laminar flow with variable thermal conductivity is considered. The flow generation is due to the bidirectional stretching of sheet. The combined phenomenon of heat and mass transport is accounted. The Cattaneo-Christov model of heat and mass diffusion is used to develop the expressions of energy and mass species. The first-order chemical reaction term in the mass species equation is considered. The boundary layer assumptions lead to the governing mathematical model. The homotopic simulation is adopted to visualize the results of the dimensionless flow equations. The graphs of velocities, temperature, and concentration show the effects of different arising parameters. A numerical benchmark is presented to visualize the convergent values of the computed results. The results show that the concentration and temperature fields are decayed for the Cattaneo^Christov theory of heat and mass diffusion.
基金Supported by Key Scientific and Technological Research Project in Higher Education Institutions of Henan Province(17A350002)Project of National Natural Science Foundation of China(81172953)
文摘[Objectives] To study the chemical components and relative content of Achyranthes bidentata leaves and provide a scientific basis for further development and utilization of A. bidentata leaves.[Methods] The chemical components of A. bidentata leaves were rapidly analyzed using the ultra high performance liquid chromatography-time of flight-high resolution mass spectrometry (UHPLC-TOF-MS).[Results] Thirty eight chemical compounds were identified in samples of A. bidentata leaves collected from Wen County of Henan Province, in which seven chemical compounds had the relative content higher than 5%, linoleic acid reached 25.7% and inokosterone A reached 13.8%.[Conclusions] A. bidentata leaves contain many kinds of chemical compounds. This study is expected to provide a certain basis for further extraction of linoleic acid and inokosterone A.
基金Supported by the National Special Research Fund for Non-Profit Sector(Ocean)(No.201205025-5)
文摘Apostichopus japonicus Selenka is an ideal tonic food that is used traditionally in many Asian countries, and it contains many bioactive substances, such as antioxidant, antimicrobial, and anticancer materials. To convert waste liquid generated during production into a useful resource, extract from waste liquid was isolated by column chromatography and studied by the pyrogallol autoxidation and 1,10-phenanthroline-Fe^2+ oxidation methods. Results show that the extract scavenged about 91% of the superoxide anion radical at a concentration of 1.4 mg/mL and 24% of the hydroxyl radical at 3.3 mg/mL. Four compounds were isolated and identified from the extract: 2,4-dihydroxy-5-methyl-1,3-azine; 2,4-dihydroxy- 1,3-diazine; 3-O-β-D-quinovopranosyl-(1→2)-4-O-sodium sulfate-β-D-xylopranosyl]-holosta-9(11)-ene313,12β,17α-triol; and 24-ethyl-5α-cholesta-7-ene-3β-O-β-D-xylopyranoside. All of these compounds are known in A. japonicus, and were found in the waste liquid for the first time.
基金This work was supported by the National Natural Science Foundation of China(Grant No.21978038).
文摘Ionic liquids(ILs)are known as green solvents,and have been widely used in the dissolution and transformation of biopolymers,the extraction of bioactive compounds and metal ions,and the capture of SO2 or CO2.However,less attention was given to the separation of bio-based chemicals,such as diols and organic acids.Bio-based chemicals can be efficiently separated by organic solvent-based salting-out extraction(SOE)from fermentation broths,while organic solvents are normally unfriendly to environment and process safety in commercialized production due to their toxicity or/and flammability.In recent years,the IL-based SOE system has been explored in the separation of bio-based chemicals as an alternative of organic solvent-based SOE system.In this review,the progress of IL-based SOE of biobased chemicals has been summarized,including the effect of ILs structure on the formation of aqueous two phases,and the influences of ILs structure and concentration,temperature and pH on the partition behaviors of target products and ILs as well as removal of impurities.Most of bio-based chemicals could be distributed into the IL-rich phase with high recovery,while the partition behaviors of bio-based chemicals are sometimes different from that in organic solvent-based SOE systems.Although the results of ILbased SOE are promising,further studies are still required in the increased selectivity of target products over by-products,recovery and recycling of ILs,and the separation between ILs and bio-based chemicals.Additionally,three kinds of integrated bioprocesses would be developed on basis of utilization of ILs as extractant for SOE,catalyst for condensation reaction and solvent for pretreatment of lignocellulose.
基金Projects(50564006,50904031)supported by the National Natural Science Foundation of ChinaProjects(2005E0004Z,2008E0049M)supported by the Natural Science Foundation of Yunnan Province,China+1 种基金Project(07Z40082)supported by the Science Foundation of the Education Department of Yunnan Province,ChinaProject(2007-16)supported by the Science Foundation of Kunming University of Science and Technology,China
文摘Quantum chemical calculation was used to estimate the reduction potentials of 25 organic cations and the oxidation potentials of 11 anions.This information was used to select promising cations and anions for the preparation of ionic liquids as green electrolytes for electrodeposition of active metals.The reasonable linear correlations between the lowest unoccupied molecular orbital(LUMO)energies and the reduction potentials of cations,and the linear relationships between the oxidation potentials and the highest occupied molecular orbital(HOMO)energies of anions were obtained.The orders of electrochemical stability for cations and anions being obtained agree well with the experimental measurements.The suitable ionic liquids with sufficiently wide electrochemical windows for electrodeposition of active metals are suggested to be[Emim]NTf2,[Bmim]NTf2,[Bmim]BF4, [Bmim]PF6,[Bmim]CTf3,[Emim]BF4,[Emim]PF6,[Emim]CTf3..
文摘Nano particles lanthanum modified lead titanate (PLT) thin films are grown on Pt/Ti/SiO 2/Si substrate by liquid source misted chemical deposition (LSMCD). PLT films are deposited for 4-8 times, and then annealed at various temperature. XRD and SEM show that the prepared films have good crystallization behavior and perovskite structure. The crystallite is about 60 nm. The deposition speed is 3 nm/min. This deposition method can exactly control stoichiometry ratios, doping concentration ratio and thickness of PLT thin films. The best annealing process is to bake at 300 ℃ for 10 min and anneal at 600 ℃ for 1 h.
文摘Occupational health management of liquid chemical transport wharf is still in its infancy,to grasp the occupational health status of employees in the industry and improve the occupational health management level of employees,taking the liquid chemical transport wharf of an enterprise as the investigation object,according to the relevant domestic occupations.Hygiene standards,using the combination of on-site occupational hygiene survey and workplace occupational hazard factors detection,identify the occupational hazard factors of the wharf and detect the degree of hazard.The survey results show that the overall occupational health of the wharf is basically good,but the noise index is slightly exceeded.It is suggested to further improve the occupational health management level of the wharf by improving the protection technology and strengthening the administrative management.
文摘Based on the physical chemistry principle, this paper proposes that the surface adsorption catalytic mechanism of HF is the key to dissolving the oscillation of the CaF\-2\|HCl\|H\-2O solid\|liquid reaction system. Meanwhile the dynamical model of this system has been established in order to study its non\|linear dynamical genesis. Although this mathematics model is based on CSTR reaction apparatus, it is applicable to the foliate flow reaction apparatus, too.
基金Supported by the Major National Water Sci-Tech Projects of China(2009ZX07210-009)the Department of Environmental Protection of Shandong Province(2006032,2060403)
文摘This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.
文摘An analysis system of informational uncertainties for accidental risk assessment of chemicals is introduced. Statistical test methods and fuzzy sets method can do the quantitative analysis of the input parameters. The uncerainties of the model can be used by quantitative compared method for the leakage accidents of chemicals. The estimation of the leaking time is important for discussing accidental source term. The uncertain analyses of the release accident for pipeline gas (CO) liquid chlorine and liquid propane gas (LPG) have been discussed.
基金the National Natural Science Foundation of China (52002157,51873083)the Natural Science Foundation of Jiangsu Province(BK20190976)+1 种基金the University Natural Science Research Project of Jiangsu Province (19KJB430017)the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University)(sklpme2018-4-27)
文摘The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs,simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date.Herein,two novel types of graphene hybrid fibers,namely ferroferric oxide dots(FODs)@GF and N-doped carbon polyhedrons(NCPs)@GF,have been proposed via a simple and efficient chemical reduction-induced fabrication.Synergistically coupling the electroactive units(FODs and NCPs)with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity,high flexibility and structural integrity.The resultant FODs@GF and NCPs@GF hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors,including large volumetric specific capacitance,good rate capability,as well as favorable electrochemical kinetics in ionic liquid electrolyte.Based on such two linear electrodes and ionogel electrolyte,a highperformance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density(26.9 mW·cm^(-3)),volumetric power density(4900 mW·cm^(-3))and strong durability over 10,000 cycles under straight/bending states.Furthermore,the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics.
基金supported by one research grant(R202017)BNU-HKBU United International College,China,and one grant(20200101)+1 种基金The Open Project of National R&D Center for Edible Fungus Processing Technology,Kaifeng,Chinaone grant China Agriculture Research System(No.CARS-20)。
文摘The health-promoting properties and chemical profiles of 30 Jew’s ear mushroom varieties were investigated. The antioxidant properties were determined by ferric reducing antioxidant power(FRAP), 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging, 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) free radical scavenging, and metal chelating ability(MCA) assays, while phenolic profiles were determined by total phenol content(TPC) and total flavonoid content(TFC) colorimetric assays. Total carbohydrate, β-glucan, and melanin contents were determined by colorimetric methods. 5’-Nucleotides, vitamin D_(2), ergosterol, and ergothioneine contents were determined by high performance liquid chromatography(HPLC). Anti-inflammation activities of Jew’s ear were evaluated by the colorimetric protease inhibitory method. The results showed that Jew’s ear mushrooms possessed substantial phenolics and antioxidant properties. All the Jew’s ear varieties contain high amount of total carbohydrate, β-glucan, reducing sugar, melanin, pectin, vitamin D2, ergosterol, and ergothioneine. The current findings could provide scientific information for breeders to nurture desired varieties and for food industry to develop new health promoting products.
文摘Nanocapsules (NC) of antioxidant rich fraction of roasted <span>Moringa </span>leaves were prepared using emulsion coacervation technique with alginate (ALG) and/or chitosan (CTS) as biopolymers. NC were characterized based on particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE) and loading capacity (LC). Substituting CTS with ALG in NC caused a reduction in particle size and PDI, and enhanced EE. Mean particle size dropped from 1209 nm in 1:3 to 413 nm in 3:1 ALG/CTS-NC;PDI decreased from 0.9% to 0.2% and zeta potential from </span></span><span><span><span style="font-family:"">-</span></span></span><span><span><span style="font-family:"">5.4 to </span></span></span><span><span><span style="font-family:"">-</span></span></span><span><span><span style="font-family:"">28.1 mV. </span></span></span><span><span><span style="font-family:"">The </span></span></span><span><span><span style="font-family:"">highest EE (87.6%) and LC (13%) were obtained with ALG-CTS-NC (3:1). ALG-NC were spherical while both CTS and ALG-CTS-NC were ovoid. ALG and ALG-CTS-NC were oil/water emulsions while CTS-NC formed water/oil emulsions. 60% and 70% of bioactives in ALG-CTS-NC (3:1) were released in simulated gastric and intestinal fluids respectively after 400 min. Release of antioxidants from NC is concentration-dependent (First order model) and involves simultaneously diffusion (Higuchi model), swelling (korsmeyer-Peppas model) and erosion (Hixson-Crowell model) mechanisms.
基金ACKNOWLEDGMENTS This work was supported by the Open Project Program of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, China (No.E21104), the National Natural Science Foundation of China (No.21201062 and No.21172066), and the International Cooperation Project (No.2013DFG60060).
文摘Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.