Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotrop...The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.展开更多
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ...Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.展开更多
The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak so...The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.展开更多
In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-p...In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.展开更多
In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in...In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.展开更多
The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of t...The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the liquid crystal structure.In addition,the addition of Kaolin and silica have an effect on the stability of the liquid crystal structure.Sensory evaluation and Texture analyzer results shown that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the spreadability of liquid crystal system.The addition of silica and Kaolin was increased the hardness and adhesive of the liquid crystal system.Rheological experiments shown that the kaolin system had lower structural stability.the system with titanium dioxide,bismuth oxychloride,and silica has good stability.This paper provides data support for the application of powders in the formulation of liquid crystal system,which aims to provide a data basis for the preparation and applications of liquid crystal emulsion.展开更多
Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely a...Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.展开更多
Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
We consider the Poiseuille flow of nematic liquid crystals via the full Ericksen-Leslie model.The model is described by a coupled system consisting of a heat equation and a quasilinear wave equation.In this paper,we w...We consider the Poiseuille flow of nematic liquid crystals via the full Ericksen-Leslie model.The model is described by a coupled system consisting of a heat equation and a quasilinear wave equation.In this paper,we will construct an example with a finite time cusp singularity due to the quasilinearity of the wave equation,extended from an earlier resultonaspecial case.展开更多
We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are th...We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.展开更多
This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut...This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.展开更多
Ordered mesoporous TiO2 (OMPT) was prepared by an evaporation induced self-assembly technique using liquid crystal as template. The key factors affecting the methylene blue (MB) oxidation efficiency were investiga...Ordered mesoporous TiO2 (OMPT) was prepared by an evaporation induced self-assembly technique using liquid crystal as template. The key factors affecting the methylene blue (MB) oxidation efficiency were investigated, including the initial concentration of MB, pH value and catalyst concentration. The results show that the obtained OMPT has high thermal stability and shows a 2D hexagonal mesostructure with the small particle size and high surface area, which lead to higher degradation efficiency than commercial P25 or nanoparticle TiO2 (NPT) fabricated by sol-gel process. The optimal conditions are 5 mg/L MB, pH 6 and 1.5 g/L OMPT for the fastest rate of MB degradation. Total organic carbon (TOC) analysis indicates complete mineralization of MB in 240 min by OMPT, with rate constant higher than NPT or P25.展开更多
Side chain liquid crystalline golysiloxanes conta ing biphenyl and benzyl ether mesogen were synthesized by the hydrosilation of poly(methylhydrcsiloxane) with 4-(4-allyloxybenzytoxy)-4'- methoxybiphenyl(M_1),4-(4...Side chain liquid crystalline golysiloxanes conta ing biphenyl and benzyl ether mesogen were synthesized by the hydrosilation of poly(methylhydrcsiloxane) with 4-(4-allyloxybenzytoxy)-4'- methoxybiphenyl(M_1),4-(4-allyloxybenzyloxy)-4'-ethoxybiphenyl(M_2),4-(4-allyloxybenzyloxy)-4'- propoxybiphenyl(M_3),4-(4-allyloxybenzyloxy)-4'-butoxybiphenyl(M_4),4-(4-allyloxybenzyloxy)-4'- pentyloxybiphenyl(M_5).The phase behavior of monomeric and polymeric liquid crystals was chararcterized by differential scanning calorimetry and optical polarization microscopy.Both the monomeric and polymeric liquid crystals exhibit liquid crystal behaviors.展开更多
We propose an electronic model in Spice, instead of traditional mathematical analysis, for analyzing the performance of ferroelectric liquid crystal (FLC) under various working conditions. Using this equivalent circ...We propose an electronic model in Spice, instead of traditional mathematical analysis, for analyzing the performance of ferroelectric liquid crystal (FLC) under various working conditions. Using this equivalent circuit model,it is easy to simulate and analyze the behavior of an FLC layer in three different typical parameters,including temperature, input light wavelength, and the frequency of driving voltage. We conclude that the response velocity drops as the wavelength increases in the range of visible light, and for the parameter of temperature, the velocity reaches its lowest value when the temperature reaches a certain degree,meanwhile,the frequency of driving voltage exerts important effects on the response velocity only when the frequency is beyond a critical value. Excellent agreement is achieved between simulation and experimental results.展开更多
A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by et...A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi- cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char- acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (H]I) phase, which was in ac- cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi- tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization.展开更多
A novel nelnatic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, ...A novel nelnatic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, and the chemical structures of photodimerization were confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectral analysis. The photoreaction behaviors of these two cinnamoyl compounds in mesomorphic state and solution were investigated, UV-Vis spectral analysis was used to analyze the photoproduct. The results show that the photochemistry of PCPC in nematic state involves both photodimerization and photoisomerization, while CC shows a complex reaction which can be divided into three parts, and this has enabled us to present new data and interpretations regarding the [2+2] photocycloaddition reaction. Additionally, the results of UV-Vis spectral analysis in solutions strongly suggest that UV-Vis spectral analysis can be used to study the kinetic behaviors of cinnamoyl moiety photoreaction.展开更多
The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid ...The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid concentration,chloride ion concentration,hydrogen ion concentration were examined on the extraction efficiency of Cyphos IL 101 towards In(III).Quantitative extraction of indium was found at 2.0 mol/L HCl using 0.005 mol/L Cyphos IL 101 and quantitative stripping with 1.0 mol/L H2SO4.Job’s method was used to determine the extracted species and R3R'PInCl4(R=C6H13;R′=C14H29)was proposed.Based on the observations on multi-metal studies,Cyphos IL 101 was further employed for the removal of indium,tin and copper from the leach liquors of waste LCDs.Optimized conditions were generated for the recovery of indium from waste LCDs.McCabe−Thiele diagram analysis,counter-current extraction and selective stripping were carried out to separate the metal ions,i.e.,indium,tin and copper.Two stages at O/A ratio of 1:3 were required for complete removal of tin from the feed and selective stripping of In and Sn was achieved using 0.1 mol/L H2SO4.A scheme for separating indium from the waste LCDs was proposed.展开更多
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1405000)the National Natural Science Foundation of China (Grant No.62375141)+1 种基金the Natural Science Foundation of Jiangsu Province,Major Project (Grant No.BK20212004)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos.NY222122 and NY222105)。
文摘The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.
基金Project supported by the National Natural Science Foundation of China (No.12172001)the Anhui Provincial Natural Science Foundation of China (No.2208085Y01)+1 种基金the University Natural Science Research Project of Anhui Province of China (No.2022AH020029)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province of China (No.2023-YF129)。
文摘Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.
基金partially supported by NSFC(11831003,12031012)the Institute of Modern Analysis-A Frontier Research Center of Shanghai。
文摘The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.
基金partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100523,KJQN202000536)the National Natural Science Foundation of China(12001074)+3 种基金the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0606)supported by the National Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0278)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202100503)the Research Project of Chongqing Education Commission(CXQT21014)。
文摘In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.
基金support by the NSFC(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)support by the China Postdoctoral Science Foundation(2023M742401)。
文摘In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.
文摘The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the liquid crystal structure.In addition,the addition of Kaolin and silica have an effect on the stability of the liquid crystal structure.Sensory evaluation and Texture analyzer results shown that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the spreadability of liquid crystal system.The addition of silica and Kaolin was increased the hardness and adhesive of the liquid crystal system.Rheological experiments shown that the kaolin system had lower structural stability.the system with titanium dioxide,bismuth oxychloride,and silica has good stability.This paper provides data support for the application of powders in the formulation of liquid crystal system,which aims to provide a data basis for the preparation and applications of liquid crystal emulsion.
基金the supports from the National Natural Science Foundation of China (61905073, 61835004, 62134001, 61905031, 62105263, 62275077)Fundamental Research Fund for the Central Universities (531118010189, 310202011qd002)+1 种基金the support from Xi’an Science and Technology Association Youth Talent Support Project (095920211306)the Postdoctoral Innovation Talent Support Program of China (BX20220388)
文摘Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
文摘We consider the Poiseuille flow of nematic liquid crystals via the full Ericksen-Leslie model.The model is described by a coupled system consisting of a heat equation and a quasilinear wave equation.In this paper,we will construct an example with a finite time cusp singularity due to the quasilinearity of the wave equation,extended from an earlier resultonaspecial case.
基金Supported by the Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences under Grant No U1531102the Fundamental Research Funds for the Central Universities under Grant No HEUCF181116the National Natural Science Foundation of China under Grant Nos61107059,61077047 and 11264001
文摘We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.10874145)the Specialized Research Fund for Doctorial Program of Higher Education(Grant No.20091333110010)+1 种基金the Natural Science Foundation of Heibei Province, China(Grant No.F2009000481)the China Postdoctoral Science Foundation(Grant Nos.20080440014 and 200902046)
文摘This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.
基金Project (51172092) supported by the National Natural Science Foundation of ChinaProject (11A093) supported the Education Department of Hunan Province,China+1 种基金Project (13JJ1023) supported by the Natural Science Fund for Distinguished Youth of Hunan Province,ChinaProject (NECT-12-0720) supported the Program for New Century Excellent Talents in Universities of China
文摘Ordered mesoporous TiO2 (OMPT) was prepared by an evaporation induced self-assembly technique using liquid crystal as template. The key factors affecting the methylene blue (MB) oxidation efficiency were investigated, including the initial concentration of MB, pH value and catalyst concentration. The results show that the obtained OMPT has high thermal stability and shows a 2D hexagonal mesostructure with the small particle size and high surface area, which lead to higher degradation efficiency than commercial P25 or nanoparticle TiO2 (NPT) fabricated by sol-gel process. The optimal conditions are 5 mg/L MB, pH 6 and 1.5 g/L OMPT for the fastest rate of MB degradation. Total organic carbon (TOC) analysis indicates complete mineralization of MB in 240 min by OMPT, with rate constant higher than NPT or P25.
基金The project supported by the National Natural Science Foundationthe Doctoral Programme Foundation of Institution of Higher Education of China
文摘Side chain liquid crystalline golysiloxanes conta ing biphenyl and benzyl ether mesogen were synthesized by the hydrosilation of poly(methylhydrcsiloxane) with 4-(4-allyloxybenzytoxy)-4'- methoxybiphenyl(M_1),4-(4-allyloxybenzyloxy)-4'-ethoxybiphenyl(M_2),4-(4-allyloxybenzyloxy)-4'- propoxybiphenyl(M_3),4-(4-allyloxybenzyloxy)-4'-butoxybiphenyl(M_4),4-(4-allyloxybenzyloxy)-4'- pentyloxybiphenyl(M_5).The phase behavior of monomeric and polymeric liquid crystals was chararcterized by differential scanning calorimetry and optical polarization microscopy.Both the monomeric and polymeric liquid crystals exhibit liquid crystal behaviors.
文摘We propose an electronic model in Spice, instead of traditional mathematical analysis, for analyzing the performance of ferroelectric liquid crystal (FLC) under various working conditions. Using this equivalent circuit model,it is easy to simulate and analyze the behavior of an FLC layer in three different typical parameters,including temperature, input light wavelength, and the frequency of driving voltage. We conclude that the response velocity drops as the wavelength increases in the range of visible light, and for the parameter of temperature, the velocity reaches its lowest value when the temperature reaches a certain degree,meanwhile,the frequency of driving voltage exerts important effects on the response velocity only when the frequency is beyond a critical value. Excellent agreement is achieved between simulation and experimental results.
文摘A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi- cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char- acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (H]I) phase, which was in ac- cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi- tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization.
文摘A novel nelnatic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, and the chemical structures of photodimerization were confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectral analysis. The photoreaction behaviors of these two cinnamoyl compounds in mesomorphic state and solution were investigated, UV-Vis spectral analysis was used to analyze the photoproduct. The results show that the photochemistry of PCPC in nematic state involves both photodimerization and photoisomerization, while CC shows a complex reaction which can be divided into three parts, and this has enabled us to present new data and interpretations regarding the [2+2] photocycloaddition reaction. Additionally, the results of UV-Vis spectral analysis in solutions strongly suggest that UV-Vis spectral analysis can be used to study the kinetic behaviors of cinnamoyl moiety photoreaction.
文摘The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid concentration,chloride ion concentration,hydrogen ion concentration were examined on the extraction efficiency of Cyphos IL 101 towards In(III).Quantitative extraction of indium was found at 2.0 mol/L HCl using 0.005 mol/L Cyphos IL 101 and quantitative stripping with 1.0 mol/L H2SO4.Job’s method was used to determine the extracted species and R3R'PInCl4(R=C6H13;R′=C14H29)was proposed.Based on the observations on multi-metal studies,Cyphos IL 101 was further employed for the removal of indium,tin and copper from the leach liquors of waste LCDs.Optimized conditions were generated for the recovery of indium from waste LCDs.McCabe−Thiele diagram analysis,counter-current extraction and selective stripping were carried out to separate the metal ions,i.e.,indium,tin and copper.Two stages at O/A ratio of 1:3 were required for complete removal of tin from the feed and selective stripping of In and Sn was achieved using 0.1 mol/L H2SO4.A scheme for separating indium from the waste LCDs was proposed.