A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4'-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blend...A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4'-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blended with polypropylene(PP) and polybutylene terephthalate(PBT) by melt mixing. The thermal behavior, liquid crystalline properties, morphological structure, and mechanical properties of the blends were investigated by differential scanning calorimetry(DSC), polarizing optical microscopy(POM), scanning electron microscopy(SEM), and tensile measurement. When a proper amount of SLCI was added, fine configurations were formed in the PBT/PP/SLCI blend system, and the mechanical properties were improved due to improved adhesion at the interface. When excess SLCI was added, an inhomogeneous structure resulted, which caused the mechanical properties to deteriorate.展开更多
A main-chain liquid crystalline ionomer(MLCI) containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT) and polypropylene(PP).MLC...A main-chain liquid crystalline ionomer(MLCI) containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT) and polypropylene(PP).MLCI interacted with both the dispersed(PP) phase and the matrix(PBT) phase to modify the interfacial interaction of PBT and PP.Differential scanning calorimetry(DSC),scanning electron microscopy(SEM) and FTIR imaging system analysis demonstrated the significance of interfacial interaction in the polymer blends.MLCI brought about good adhesion at the interfacial,which reduced the disperse phase size and enabled a fine PP phase at matrix.The mechanical properties of the ternary blends were improved when a proper amount of MLCI was added.This was attributed to enhanced adhesion at the interface,which invoked better mechanical properties in the blends.展开更多
基金Supported by the National Natural Science Foundation of China(No50673105)
文摘A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4'-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blended with polypropylene(PP) and polybutylene terephthalate(PBT) by melt mixing. The thermal behavior, liquid crystalline properties, morphological structure, and mechanical properties of the blends were investigated by differential scanning calorimetry(DSC), polarizing optical microscopy(POM), scanning electron microscopy(SEM), and tensile measurement. When a proper amount of SLCI was added, fine configurations were formed in the PBT/PP/SLCI blend system, and the mechanical properties were improved due to improved adhesion at the interface. When excess SLCI was added, an inhomogeneous structure resulted, which caused the mechanical properties to deteriorate.
基金Supported by the High-Tech Research and Development Program of China(No.2006AA02Z291)the National Natural Science Foundation of China(No.50673105)
文摘A main-chain liquid crystalline ionomer(MLCI) containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT) and polypropylene(PP).MLCI interacted with both the dispersed(PP) phase and the matrix(PBT) phase to modify the interfacial interaction of PBT and PP.Differential scanning calorimetry(DSC),scanning electron microscopy(SEM) and FTIR imaging system analysis demonstrated the significance of interfacial interaction in the polymer blends.MLCI brought about good adhesion at the interfacial,which reduced the disperse phase size and enabled a fine PP phase at matrix.The mechanical properties of the ternary blends were improved when a proper amount of MLCI was added.This was attributed to enhanced adhesion at the interface,which invoked better mechanical properties in the blends.