Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the ...Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.展开更多
Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphas...Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)展开更多
The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power se...The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power series is presented. A stream function is introduced into the governing equations and two sets of equations describing the film flow separately at zeroth and first order are developed. The zeroth order equation is solved directly. The first order equations is solved at the leading approximation. Effect of parameters Re, M, λ and ε on the free surface wave of film is discussed.展开更多
This paper deals with the linear stability of a liquid film flowing down an inclined plane. The Navier-Stokes equations were reduced into four evolution equations that describe the development of the film depth, the f...This paper deals with the linear stability of a liquid film flowing down an inclined plane. The Navier-Stokes equations were reduced into four evolution equations that describe the development of the film depth, the flow rate, the free surface velocity, and the wall shear stress, using the Karman-Polhausen boundary layer integral method. Thus, we were able to determine the stability threshold and approach well the critical wave number for long waves. The obtained results were found to be in good agreement with the experiments of Liu et al.展开更多
Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution betwee...Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.展开更多
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow co...The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.展开更多
Hydrodynamic experiments on a liquid film are carried out using water in both straight and helical tubes at angles of inclination ranging between 2.5° and 5° and on three different coil diameters (23.86 cm, ...Hydrodynamic experiments on a liquid film are carried out using water in both straight and helical tubes at angles of inclination ranging between 2.5° and 5° and on three different coil diameters (23.86 cm, 32.74 cm and 41.13 cm) for film Reynolds numbers ranging from 100 to 2000. The film thickness is measured by two micrometers, arranged to measure vertical and horizontal distances within the cross section of the tube. The results of film thickness are related to the hydraulic radius to characterize the film flow in both types of tube. Momentum transfer rates are shown to be higher in helical tubes than in the straight incline tube. An empirical correlation is presented for film thickness in the helical tube in terms of NT (coil tube)/NT (straight tube) for film Dean number ranging from 1 to 1000.展开更多
On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict ...On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.展开更多
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding...The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than0.15 m·s-1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s-1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventually evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.展开更多
The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes o...The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.展开更多
Theoretical and experimental study has been performed on heat transfer of airwater two phase laminar annular flow through a uniformly heated vertical small tube. Analysis ascertains that the mechanism of heat transfer...Theoretical and experimental study has been performed on heat transfer of airwater two phase laminar annular flow through a uniformly heated vertical small tube. Analysis ascertains that the mechanism of heat transfer is the evaporation of a very thin liquid film attached on the tube wall. The predictions of analytical solutions are quite good compared with the experimental results.展开更多
Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin ...Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin coating is often used for spreading photoresist on a wafer surface and drying photoresist film.In spin coating process,photoresist is uniformly spread on the wafer surface by centrifugal force caused by rotating wafer.However,it is a serious concern that streaky lines,which are caused by spiral vortices,appear on the wafer surface and prevent the formation of uniform film in the case of high rotating speed.On the other hand,in the case of low rotating speed,a small hump of the film is formed near the wafer edge.The main purpose of this study is to make clear the drying characteristics of the flowing liquid film on the rotating wafer.Temperature distribution of the flowing liquid film is captured by an infrared thermal video camera and radial gradient of the film temperature is introduced in order to evaluate the drying characteristic of the flowing film under steady state condition.Effects of the flow rate of the liquid film on the film temperature are investigated.The film temperature gradually decreases in the radial direction in all cases.At low rotating speed,the radial gradient of the film temperature is almost constant widely.On the other hand,at high rotating speed,the radial gradient of the film temperature takes a certain maximum value.It is found that the location of the gradient peak corresponds with the transition region of the air boundary layer,in which spiral vortices swirl,and shifts to the inner side of the disk with an increase of the liquid flow rate.展开更多
管内气液螺旋环状流动可以通过设置固定叶片的旋流器形成,旋流器的结构极大地影响了形成的螺旋环状流动的稳定性。对此,选取了四种典型旋流器结构开展三个典型来流工况下螺旋环状流形成的实验研究。通过图像处理结合概率密度函数(probab...管内气液螺旋环状流动可以通过设置固定叶片的旋流器形成,旋流器的结构极大地影响了形成的螺旋环状流动的稳定性。对此,选取了四种典型旋流器结构开展三个典型来流工况下螺旋环状流形成的实验研究。通过图像处理结合概率密度函数(probability density function,PDF)拟合的方法分析了形成螺旋环状流的稳定性,同时结合液膜波动特性与旋流器内部作用过程分析发现:平板式及平板有中心柱式旋流器在不同来流工况下产生的液膜相较于螺旋叶片式A/B旋流器都更加稳定,相同工况下的失稳距离也更长,而螺旋叶片式A/B旋流器产生的螺旋环状流的稳定性较差,在更短的距离内即发生了螺旋环状流失稳现象;不同工况下液相折算速度的上升有助于提高液膜稳定性与螺旋环状流失稳距离,从而形成更稳定的螺旋环状流;叶片作用下流体内部压力梯度和气液相分布规律高度相关,压力梯度和周向速度是形成螺旋环状流动的主要因素,并且压力梯度和周向速度的大小一定程度决定了螺旋环状流动气液交界面的稳定性。展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB125003 and 2013GB114002)National Natural Science Foundation of China(No.11105044)
文摘Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.
基金National Natural Science Foundation of China(No.B10275019)
文摘Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)
基金Acknowledgement: This work is supported by Natural Science Foundation of Tianjin of China (No. 07JCYBJC01300).
文摘The flow of a freely falling liquid film of low Reynolds number down a vertical long periodic sine-shaped wavy plate of small corrugations is researched theoretically. A model based on perturbation method and power series is presented. A stream function is introduced into the governing equations and two sets of equations describing the film flow separately at zeroth and first order are developed. The zeroth order equation is solved directly. The first order equations is solved at the leading approximation. Effect of parameters Re, M, λ and ε on the free surface wave of film is discussed.
文摘This paper deals with the linear stability of a liquid film flowing down an inclined plane. The Navier-Stokes equations were reduced into four evolution equations that describe the development of the film depth, the flow rate, the free surface velocity, and the wall shear stress, using the Karman-Polhausen boundary layer integral method. Thus, we were able to determine the stability threshold and approach well the critical wave number for long waves. The obtained results were found to be in good agreement with the experiments of Liu et al.
基金Project(2016YFC0700100)supported by the National Key R&D Program of ChinaProject(JDJQ20160103)supported by the Promotion of the Connotation Development Quota Project of Colleges and Universities-Outstanding Youth of Architectural University,China。
文摘Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.
基金sponsored by the National Natural Science Foundation of China (Grant No. 51504279)Shandong Provincial Natural Science Foundation, China (ZR2014EEQ021)+2 种基金Qingdao Science and Technology (15-9-1-96-jch)the Fundamental Research Funds for the Central Universities (17CX02073, 17CX02011A and R1502039A)973 Project (2015CB251206)
文摘The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
文摘Hydrodynamic experiments on a liquid film are carried out using water in both straight and helical tubes at angles of inclination ranging between 2.5° and 5° and on three different coil diameters (23.86 cm, 32.74 cm and 41.13 cm) for film Reynolds numbers ranging from 100 to 2000. The film thickness is measured by two micrometers, arranged to measure vertical and horizontal distances within the cross section of the tube. The results of film thickness are related to the hydraulic radius to characterize the film flow in both types of tube. Momentum transfer rates are shown to be higher in helical tubes than in the straight incline tube. An empirical correlation is presented for film thickness in the helical tube in terms of NT (coil tube)/NT (straight tube) for film Dean number ranging from 1 to 1000.
基金Supported by the National Natural Science Foundation of China(11172205,11372219,51176137)
文摘On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination,different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters(injection pressure,ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic(CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than0.15 m·s-1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s-1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventually evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.
基金Supported by the National Natural Science Foundation of China(Grant No.59995460)
文摘The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.
文摘Theoretical and experimental study has been performed on heat transfer of airwater two phase laminar annular flow through a uniformly heated vertical small tube. Analysis ascertains that the mechanism of heat transfer is the evaporation of a very thin liquid film attached on the tube wall. The predictions of analytical solutions are quite good compared with the experimental results.
文摘Recently,development of high technology has been required for the formation of uniform thin film in manufacturing processes of semiconductor as the precision instruments become more sophisticated.A method called spin coating is often used for spreading photoresist on a wafer surface and drying photoresist film.In spin coating process,photoresist is uniformly spread on the wafer surface by centrifugal force caused by rotating wafer.However,it is a serious concern that streaky lines,which are caused by spiral vortices,appear on the wafer surface and prevent the formation of uniform film in the case of high rotating speed.On the other hand,in the case of low rotating speed,a small hump of the film is formed near the wafer edge.The main purpose of this study is to make clear the drying characteristics of the flowing liquid film on the rotating wafer.Temperature distribution of the flowing liquid film is captured by an infrared thermal video camera and radial gradient of the film temperature is introduced in order to evaluate the drying characteristic of the flowing film under steady state condition.Effects of the flow rate of the liquid film on the film temperature are investigated.The film temperature gradually decreases in the radial direction in all cases.At low rotating speed,the radial gradient of the film temperature is almost constant widely.On the other hand,at high rotating speed,the radial gradient of the film temperature takes a certain maximum value.It is found that the location of the gradient peak corresponds with the transition region of the air boundary layer,in which spiral vortices swirl,and shifts to the inner side of the disk with an increase of the liquid flow rate.
文摘管内气液螺旋环状流动可以通过设置固定叶片的旋流器形成,旋流器的结构极大地影响了形成的螺旋环状流动的稳定性。对此,选取了四种典型旋流器结构开展三个典型来流工况下螺旋环状流形成的实验研究。通过图像处理结合概率密度函数(probability density function,PDF)拟合的方法分析了形成螺旋环状流的稳定性,同时结合液膜波动特性与旋流器内部作用过程分析发现:平板式及平板有中心柱式旋流器在不同来流工况下产生的液膜相较于螺旋叶片式A/B旋流器都更加稳定,相同工况下的失稳距离也更长,而螺旋叶片式A/B旋流器产生的螺旋环状流的稳定性较差,在更短的距离内即发生了螺旋环状流失稳现象;不同工况下液相折算速度的上升有助于提高液膜稳定性与螺旋环状流失稳距离,从而形成更稳定的螺旋环状流;叶片作用下流体内部压力梯度和气液相分布规律高度相关,压力梯度和周向速度是形成螺旋环状流动的主要因素,并且压力梯度和周向速度的大小一定程度决定了螺旋环状流动气液交界面的稳定性。