The hydrodynamic and mass transfer characteristics of a downflow liquid jet loop reactor (D-JLR) were studied experimentally with water/air and CMC (carboxymethyl cellulose) solution/air systems. The effects of the ge...The hydrodynamic and mass transfer characteristics of a downflow liquid jet loop reactor (D-JLR) were studied experimentally with water/air and CMC (carboxymethyl cellulose) solution/air systems. The effects of the geometry, the operating parameters and the physical properties of the liquid phase on gas hold-up and mass transfer coefficient were measuered. Compared with other types of gas-liquid reactor, D-JLR shows higher mass transfer coefficient and lower energy dissipation rate, the optimum diameter ratio was found to be about 0.42-0.6. A model for gas hold-up in D-JLR with Newtonian and non-Newtonian fluids has been developed on the basis of the equation of motion and the concept of average mixing length. The prediction of gas hold-up with the model agreed with the experimental results of this work.展开更多
文摘The hydrodynamic and mass transfer characteristics of a downflow liquid jet loop reactor (D-JLR) were studied experimentally with water/air and CMC (carboxymethyl cellulose) solution/air systems. The effects of the geometry, the operating parameters and the physical properties of the liquid phase on gas hold-up and mass transfer coefficient were measuered. Compared with other types of gas-liquid reactor, D-JLR shows higher mass transfer coefficient and lower energy dissipation rate, the optimum diameter ratio was found to be about 0.42-0.6. A model for gas hold-up in D-JLR with Newtonian and non-Newtonian fluids has been developed on the basis of the equation of motion and the concept of average mixing length. The prediction of gas hold-up with the model agreed with the experimental results of this work.