Experiments were carried out in geometrically similar vessels with diameters of 0.287, 0.495 and 1.1m respectively. Bubble diameter distribution was measured with a dual electric conductivity probe placed in the tanks...Experiments were carried out in geometrically similar vessels with diameters of 0.287, 0.495 and 1.1m respectively. Bubble diameter distribution was measured with a dual electric conductivity probe placed in the tanks. Gas holdup was measured by spillover method. Considering the coalescence of bubbles in the upper circulation region of the aeration stirred tank, introducing the concepts of turbulence decay and effective viscosity of gas-liquid system into this work, and taking into account the equilibrium between the surface energy of the bubbles and the energy supplied by agitation, mathematical models for bubble diameter and mean gas holdup were derived. The mathematical models were confirmed by experimental data.展开更多
基金Supported by the National Nature Science Foundation of China.
文摘Experiments were carried out in geometrically similar vessels with diameters of 0.287, 0.495 and 1.1m respectively. Bubble diameter distribution was measured with a dual electric conductivity probe placed in the tanks. Gas holdup was measured by spillover method. Considering the coalescence of bubbles in the upper circulation region of the aeration stirred tank, introducing the concepts of turbulence decay and effective viscosity of gas-liquid system into this work, and taking into account the equilibrium between the surface energy of the bubbles and the energy supplied by agitation, mathematical models for bubble diameter and mean gas holdup were derived. The mathematical models were confirmed by experimental data.
文摘在内径50 mm、长27.3 m的水平管上利用空气-水作试验介质对段塞流的压力和液塞持液率进行了试验研究。采用压力传感器测量压力变化,采用平行电导探针测量液塞持液率变化。通过试验发现:液塞通过测量点时持液率的变化比压力变化迅速,持液率能更真实地反映段塞流动特性,可以用持液率的波动情况来确定液塞频率。将液塞持液率模型预测值与试验值进行了比较,结果表明,水平管大多数试验工况下的Zhang H Q模型预测值与试验值吻合最好。