A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure t...A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.展开更多
In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Consi...In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Considering calculation simplicity and operation practicability,the Moving Pulsating Ball Model(MPBM)of large amplitude liquid sloshing is introduced into the calculation of launch vehicle stage separation.Combining the dynamic equation of the model with the energy relationship during"breathing movement",the formula calculating the force of liquid on the rigid body is derived.Compared with the calculations of commercial CFD calculation software,the accuracy of MPBM model is verified.Then,all the external forces and moments are applied to the rigid body of the stages,so that the translational and rotational dynamic equations of the stages are obtained respectively.According to the relative position of the two stages,the geometric shape of the interstage section and the engine of the second stage,the minimum clearance in the separation process can be decided to guarantee that the separation process is safe.展开更多
One of the crucial factors affecting the carrying capacity of the cryogenic liquid launch vehicle is the effective volume of the tank.Theoretical and experimental investigations on vortex breaker mechanisms have propo...One of the crucial factors affecting the carrying capacity of the cryogenic liquid launch vehicle is the effective volume of the tank.Theoretical and experimental investigations on vortex breaker mechanisms have proposed promising schemes applied in the oxygen tank of the liquid-propellant launch vehicle to ensure the normal operation of the engine.In this paper,the liquid surface profile functions of the laminar core when the vortex generates were derived based on the Rankine vortex model.The dimensionless residual volume V/d3 and the Froude number were applied to compare the theoretical prediction of critical height with the actual simulation data of liquid oxygen.This comparison method can improve the model’s accuracy.The efficiency of different basic shapes of vortex breakers was tested by conducting CFD modelling on a non-vertical outflow tank under a specific operating condition.Simulation results suggest negligible effects of heat transfer and surface tension.A circular plate is considered the optimal vortex breaker shape in traditional vertical outflow tanks,while a higher optimize efficiency was discovered in the half baffle basic shape in a non-vertical outflow tank by comparing the dimensionless residual volume and flow coefficient.A 34.26%reduction in flow resistance of half baffle breaker can be reached when applying a twenty-degree outlet pipe chamfering setting compared to a zero-degree chamfer.Considering practical operating limitations,it is concluded that a vortex breaker mechanism in a half baffle basic shape with a radius of 2.5d and a height of 4/d is the optimal scheme,which is suitable for all types of tanks.Its optimization efficiency of the residual volume reduction is about 56.68%compared to a nobreaker installation case.Lastly,a general equation based on CFD simulation for predicting the residual volume under a certain outflow velocity was proposed:V=d3yaFr0:3,which trend is consistent with that of mathematical prediction V=d3yaFr1=3.This consistency proves the accuracy and applicability of optimization strategy in this paper.展开更多
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736,in part by the Teaching Reform Project of Higher Education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038,and in part by the Graduate Academic Innovation Project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19。
文摘A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results.
基金supported by the National Natural Science Foundation of China(Nos.12132002,12202044)。
文摘In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Considering calculation simplicity and operation practicability,the Moving Pulsating Ball Model(MPBM)of large amplitude liquid sloshing is introduced into the calculation of launch vehicle stage separation.Combining the dynamic equation of the model with the energy relationship during"breathing movement",the formula calculating the force of liquid on the rigid body is derived.Compared with the calculations of commercial CFD calculation software,the accuracy of MPBM model is verified.Then,all the external forces and moments are applied to the rigid body of the stages,so that the translational and rotational dynamic equations of the stages are obtained respectively.According to the relative position of the two stages,the geometric shape of the interstage section and the engine of the second stage,the minimum clearance in the separation process can be decided to guarantee that the separation process is safe.
文摘One of the crucial factors affecting the carrying capacity of the cryogenic liquid launch vehicle is the effective volume of the tank.Theoretical and experimental investigations on vortex breaker mechanisms have proposed promising schemes applied in the oxygen tank of the liquid-propellant launch vehicle to ensure the normal operation of the engine.In this paper,the liquid surface profile functions of the laminar core when the vortex generates were derived based on the Rankine vortex model.The dimensionless residual volume V/d3 and the Froude number were applied to compare the theoretical prediction of critical height with the actual simulation data of liquid oxygen.This comparison method can improve the model’s accuracy.The efficiency of different basic shapes of vortex breakers was tested by conducting CFD modelling on a non-vertical outflow tank under a specific operating condition.Simulation results suggest negligible effects of heat transfer and surface tension.A circular plate is considered the optimal vortex breaker shape in traditional vertical outflow tanks,while a higher optimize efficiency was discovered in the half baffle basic shape in a non-vertical outflow tank by comparing the dimensionless residual volume and flow coefficient.A 34.26%reduction in flow resistance of half baffle breaker can be reached when applying a twenty-degree outlet pipe chamfering setting compared to a zero-degree chamfer.Considering practical operating limitations,it is concluded that a vortex breaker mechanism in a half baffle basic shape with a radius of 2.5d and a height of 4/d is the optimal scheme,which is suitable for all types of tanks.Its optimization efficiency of the residual volume reduction is about 56.68%compared to a nobreaker installation case.Lastly,a general equation based on CFD simulation for predicting the residual volume under a certain outflow velocity was proposed:V=d3yaFr0:3,which trend is consistent with that of mathematical prediction V=d3yaFr1=3.This consistency proves the accuracy and applicability of optimization strategy in this paper.