[Objectives]To observe the effect of acupoint liquid nitrogen cryotherapy on the neuro-endocrine-immune network system of lung qi deficiency syndrome during the remission period of bronchial asthma and explore its pos...[Objectives]To observe the effect of acupoint liquid nitrogen cryotherapy on the neuro-endocrine-immune network system of lung qi deficiency syndrome during the remission period of bronchial asthma and explore its possible mechanism.[Methods]A total of 100 patients with bronchial asthma were randomly divided into control group and observation group,with 50 cases in each group.The control group was given budesonide spray inhalation treatment,combined with acupoint liquid nitrogen freezing treatment,twice a year for a course of treatment,followed up for 1 year.The other 50 healthy volunteers were included in the healthy group,and no treatment was given in the healthy group.Serum immunoglobulins A,G,E(IgA,IgG,IgE)were detected before and after treatment in each group,serum cytokines[interleukin-4(IL-4),interleukin-10(IL-10),tumor necrosis factor-α(TNF-α),interferon-γ(IFN-γ)],plasma neurotransmitters[substance P(SP),vasoactive intestinal peptide(VIP)].[Results]Before treatment,compared with healthy group,the contents of IgA,IgG,IL-10,IFN-γand VIP in observation group and control group were decreased,while the contents of IgE,IL-4,TNF-αand SP were increased,with statistical significance(P<0.05).After treatment,compared with before treatment,IgA,IgG,IL-10,IFN-γand VIP contents in observation group and control group were increased(P<0.05),and observation group was higher than control group(P<0.05),IgE,IL-4 and SP contents in observation group and control group were decreased(P<0.05).The observation group was lower than the control group(P<0.05).[Conclusions]Acupoint liquid nitrogen cryotherapy may improve the immune function of the body,regulate the release of cytokines and regulate neuromediators,and thus play a role in the prevention and treatment of bronchial asthma.展开更多
Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study...Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study focuses on the acoustic emission properties of coal specimens treated utilizing liquid nitrogen with varying initial temperatures in a three-point bending environment.Through examination of the load-displacement curves of the considered coal samples,their mechanical properties are also revealed for different initial temperatures and cycling frequencies.The findings demonstrate a gradual decline in the maximum load capacity of coal rock as the temperature rises.Similarly,when subjected to the same temperature,an escalation in the cycling frequency leads to a reduction in the peak load of coal rock.This suggests that both temperature and cycling frequency exert a notable impact on the fracturing efficacy of liquid nitrogen.Freeze-thaw cycling treatments and exposure to high-temperature conditions can activate preexisting damage in the coal rock,and,accordingly,influence its mechanical properties.In particular,throughout the progressive loading of coal rock samples,the failure mechanisms are predominantly characterized by the occurrence of tensile cracks,succeeded by the development,spread,and fracture of shear fissures.展开更多
This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blo...This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blowing nitrogen gas in LF refining process.It is considered that the main factors affecting the nitrogen increasing instability of molten steel are the initial temperature of LF refining,nitrogen relative element,surface active elements[O]and[S]of steel liquid,and bottom blowing rate of ladle.The large-scale production practice shows that T[O]not more than 50×10-6 and[S]is not more than 0.020 in LF refining at the initial temperature of not less than 1570.The liquid steel nitrogen enrichment test is carried out by ladle bottom blowing nitrogen gas after 20 min of refining,the flow rate is set as(6.0~7.0)NL/min per ton,and it is turned to 2 NL/min at 6 min before the end of refining,the nitrogen increasing rate of liquid steel is basically stable at(5~6)×10-6 per minute.展开更多
The efficiency of a new cryoprotectant,GP,for the preservation of Acidithiobacillus ferrooxidans(A.ferrooxidans) strain DC in liquid nitrogen was investigated.The optimal concentration of this new cryoprotectant for...The efficiency of a new cryoprotectant,GP,for the preservation of Acidithiobacillus ferrooxidans(A.ferrooxidans) strain DC in liquid nitrogen was investigated.The optimal concentration of this new cryoprotectant for the maximal viable cell recovery and the highest ferrous ion oxidation activity was determined.The results show that 30%(volume fraction) GP is optimal for the cryopreservation with 84.4% of cells surviving,completely oxidizing ferrous ions within 120 h,and growing to a final density of 5.8×107 cell/mL after 6 d in the culture.Furthermore,the optimal residual GP concentration for viable cell recovery after culture of thawed cells in 9K medium for 6 d is 0.6%(volume fraction).At this concentration,strain DC completely oxidizes ferrous ions within 108 h and grows to a final cell density of 6.8×107 mL-1.Thus,GP is a simple,effective cryoprotectant for the preservation of A.ferrooxidans strain DC in liquid nitrogen.展开更多
This article described the characteristics of the liquid nitrogen engine's ideal open cycle.Using two interconnecting strokes to achieve the power output can mitigate the trade-off between high efficiency and the ...This article described the characteristics of the liquid nitrogen engine's ideal open cycle.Using two interconnecting strokes to achieve the power output can mitigate the trade-off between high efficiency and the potential mechanical complexity of multiple-cylinder engines. The total specific energy of the binary media (methane-nitrogen) cycle system could be much higher than the unitary medium (liquid nitrogen) cycle system. By theoretical analysis, the reasonably acceptable driving range proved the feasibility of the liquid nitrogen engine used for supplying power for a lightweight car.展开更多
Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat...Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.展开更多
Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SE...Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SEM)are employed to visualize and quantify morphological evolution characteristics of fractures in coal after LN2 thermal shocking treatments.LN2 thermal shocking leads to a denser fracture network than its original state with coal porosity growth rate increasing up to 183.3%.The surface porosity of theμCT scanned layers inside the coal specimen is influenced by LN2 thermal shocking which rises from 18.76%to 215.11%,illustrating the deformation heterogeneity of coal after LN2 thermal shocking.The cracking effect of LN2 thermal shocking on the surface of low porosity is generally more effective than that of high surface porosity,indicating the applicability of LN2 thermal shocking on low-permeability CBM reservoir stimulation.The characteristics of SEM scanned coal matrix in the coal powder and the coal block after the LN2 thermal shocking presented a large amount of deep and shallow progressive scratch layers,fracture variation diversity(i.e.extension,propagation,connectivity,irregularity)on the surface of the coal block and these were the main reasons leading to the decrease of the uniaxial compressive strength of the coal specimen.展开更多
AIM To evaluate the efficacy and safety of liquid nitrogen cryotherapy as a primary or rescue treatment for BE,with and without dysplasia,or intramucosal adenocarcinoma (IMC).METHODS This was a retrospective,single-ce...AIM To evaluate the efficacy and safety of liquid nitrogen cryotherapy as a primary or rescue treatment for BE,with and without dysplasia,or intramucosal adenocarcinoma (IMC).METHODS This was a retrospective,single-center study carried out in a tertiary care center including 45 patients with BE who was treatment-na?ve or who had persistent intestinal metaplasia(IM),dysplasia,or IMC despite prior therapy.Barrett's mucosa was resected via EMR when clinically appropriate,then patients underwent cryotherapy until eradication or until deemed to have failed treatment.Surveillance biopsies were taken at standard intervals.RESULTS From 2010 through 2014,33 patients were studied regarding the efficacy of cryotherapy.Overall,29 patients (88%) responded to cryotherapy,with 84% having complete regression of all dysplasia and cancer.Complete eradication of cancer and dysplasia was seen in 75% of subjects with IMC; the remaining two subjects did not respond to cryotherapy.Following cryotherapy,15 patients with high-grade dysplasia (HGD) had 30% complete regression,50% IM,and 7% low-grade dysplasia (LGD); one subject had persistent HGD.Complete eradication of dysplasia occurred in all 5 patients with LGD.In 5 patients with IM,complete regression occurred in 4,and IM persisted in one.In 136 cryotherapy sessions amongst 45 patients,adverse events included chest pain (1%),stricture (4%),and one gastrointestinal bleed in a patient on dual antiplatelet therapy who had previously undergone EMR.CONCLUSION Cryotherapy is an efficacious and safe treatment modality for Barrett's esophagus with and without dysplasia or intramucosal adenocarcinoma.展开更多
Cryogenic fracturing with liquid nitrogen(LN_(2))offers the benefits of reducing the water consumption and adverse environmental impacts induced by water-based fracturing,as well as potentially enhancing the fracture ...Cryogenic fracturing with liquid nitrogen(LN_(2))offers the benefits of reducing the water consumption and adverse environmental impacts induced by water-based fracturing,as well as potentially enhancing the fracture complexity.We performed a series of laboratory experiments to explore the key mechanisms governing the breakdown pressures of shale during cryogenic fracturing.In this study,cylindrical shale samples were pre-conditioned by exposing a borehole to low-temperature LN_(2) for a certain time period,and then,the samples were fractured using gaseous N_(2) under triaxial stress and a high reservoir temperature.The effects of various key parameters on the breakdown pressure were investigated,including the duration of the low-temperature LN_(2) treatment,the confining pressure,the reservoir temperature,and the direction of the shale bedding relative to the borehole axis.The results demonstrate that the injection of low-temperature LN_(2) as a pre-fracturing fluid into a borehole can significantly reduce the breakdown pressure of the shale during subsequent nitrogen fracturing.This reduction in breakdown pressure can be further intensified by increasing the duration of the LN_(2) pre-conditioning.Without LN_(2) pre-conditioning,the breakdown pressure initially increases and then decreases with increasing reservoir temperature.When LN_(2) pre-conditioning is applied,the breakdown pressure keeps decreasing with increasing reservoir temperature.As the confining pressure increased,the breakdown pressure increased linearly in the tests with and without LN_(2) pre-conditioning.The experimental results demonstrate that LN_(2) preconditioning before N_(2) fracturing is a promising waterless fracturing technique that reduces the breakdown pressure and enhances the fracture complexity.展开更多
Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown press...Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown pressure and results only in single main fracture morphology. Furthermore, HF has also other problems such as the increased risk of seismic events and consuption of large amount of water. In this work, a new stimulation method based on cyclic soft stimulation (CSS) and liquid nitrogen (LN2) fracturing, known as cyclic LN2 fracturing is explored, which we believe has the potential to solve the above issues related to HF. The fracturing performances including breakdown pressure and fracture morphology on granites under true-triaxial stresses are investigated and compared with cyclic water fracturing. Cryo-scanning electron microscopy (Cryo-SEM) tests and X-ray computed tomography (CT) scanning tests were used for quantitative characterization of fracture parameters and to evaluate the cyclic LN2 fracturing performances. The results demonstrate that the cyclic LN2 fracturing results in reduced breakdown pressure, with between 21% and 67% lower pressure compared with using cyclic water fracturing. Cyclic LN2 fracturing tends to produce more complex and branched fractures, whereas cyclic water fracturing usually produces a single main fracture under a low number of cycles and pressure levels. Thermally-induced fractures mostly occur around the interfaces of different particles. This study shows the potential benefits of cyclic LN2 fracturing on HDR. It is expected to provide theoretical guidance for the cyclic LN2 fracturing application in HDR reservoirs.展开更多
Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and cont...Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and controlled to ensure the thermal stability and the dielectric strength as well. To measure the level, capacitance method and differential pressure method are usually used. However, each method has installation difficulties and measurement errors for unsteady state operation with varying system pressure. A new liquid level meter using a 2G HTS conductor is described, which has similar structure with the liquid helium level meter with NbTi filament. The level meter is fabricated with a parallel connected heater, which helps the separation of the superconducting region and normal region, considering the critical temperature, large heat capacity of conductor and cooling characteristics. The level of liquid nitrogen can be obtained from the measured voltage signal along the 2G HTS conductor. Design, fabrication and test results of the new liquid nitrogen level meter are presented.展开更多
The kinetics of denitrogenation from liquid steel was studied by using an oxygen-nitrogen analysis system(LECO TC-436) under 1600 degreesC similar to 2813 degreesC conditions. The results show that when [S]=0.005%, ni...The kinetics of denitrogenation from liquid steel was studied by using an oxygen-nitrogen analysis system(LECO TC-436) under 1600 degreesC similar to 2813 degreesC conditions. The results show that when [S]=0.005%, nitrogen removal was controlled by nitrogen transfer in liquid diffusion layer, when [S]=0.012% and 0.140%, it was controlled by both nitrogen transfer in liquid diffusion layer and the chemical reaction at the liquid-gas interface below 2250 degreesC, and by nitrogen transfer in liquid diffusion layer under 2250 degreesC similar to 2813 degreesC conditions. The activation energy E-a was 57 kJ/mol for 0.0050%[S], 95 kJ/mol for 0.012%[S], 165 kJ/mol for 0.140%[S]. The resistance of sulphur on nitrogen removal decreased with the temperature rose, and disappeared at 2630 degreesC. Based on the results obtained, it has been answered why the nitrogen in liquid steel can be decreased rapidly by carbon-oxygen reaction under very high oxygen and sulphur content conditions during the BOF, EAF, VOD and AOD steelmaking processes.展开更多
A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to ...A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.展开更多
To illustrate the effect of liquid nitrogen preservation on antigenicity of human homograft aortic valve (HAV), human aortic valve tissue were cocultured together with peripheral blood mononuclear cells (PBMCs). Follo...To illustrate the effect of liquid nitrogen preservation on antigenicity of human homograft aortic valve (HAV), human aortic valve tissue were cocultured together with peripheral blood mononuclear cells (PBMCs). Following detections were done to show the difference of antigenicity of HAV indirectly at different period after being preserved in liquid nitrogen: ① 3H TdR incorporation (cpm) was observed after tissue cell cocultured and stimulation index (SI) was calculated;② Density of IL 2 in medium was measured by MTT means. The results indicated that antigenicity of fresh HAV was the strongest; with the prolong of being preserved, antigenicity decreased gradually. It decreased significantly within first 48 h preserved at 4℃, then decreased significantly after preserved in liquid nitrogen for 24 h. 2 weeks later, antigenicity decreased to the lowest level.展开更多
The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability.Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks,ef...The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability.Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks,effectively reducing fracture pressure and establishing intricate fracture networks,thus offering a potential solution for reservoir reconstruction.To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection,sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection,rock temperature,and in-situ stress conditions.The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions,complemented by electron microscope analysis to elucidate the factors driving the complex fracture characteristics of sandstone.The findings revealed a significant decrease in fracture pressure after liquid nitrogen pre-injection,accompanied by a notable increase in the complexity of the fracture network and the roughness of the fracture surface.Moreover,prolonging the duration of liquid nitrogen injection and elevating reservoir temperature further contributed to reducing fracture pressure,consequently enhancing fracture complexity and surface roughness.Conversely,the application of confining pressure amplified fracture pressure while intensifying the degree of fracturing.Notably,the investigation highlighted the increased presence of microcracks in sandstone resulting from liquid nitrogen preinjection,facilitating fluid diffusion during fracturing and yielding lower fracture pressures,thereby enhancing the effectiveness of sandstone reservoir reformation.The research results can provide theoretical guidance for geothermal reservoir reconstruction.展开更多
The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium boroh...The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium borohydride is investigated. Practically, the target application is mobile fuel cells based on hydrogen production from storage in chemical hydrides. The LNCT would be used as a one step purification method with less cost and space requirements instead of applying the conventional purification techniques. Two catalysts were investigated for the production of hydrogen from the aqueous solution of NaBH4 in a small scale packed bed reaction column. The hydrogen generated from the catalytic decomposition of NaBH4 was accompanied by limited quantity of water vapour and alkaline mist. Nonetheless, higher quantities were generated when applying the acidic decomposition of NaBH4 and consequently the utilization of LNCT for H2 purification has proved useful and lead to a reduction in the content of these impurities; thereby the concentration of hydrogen in the outlet stream has increased.展开更多
How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nit...How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nitrogen cooling. FLAC with FISH function was employed to numerically model the rock behavior under cooling. The enhanced perme- ability of the volumetric strain was defined, and the permeability was directly evaluated based on element's volumetric strain. Detailed procedures for implementing the evolution model of permeability in this paper were presented. A case study was carried out to simulate a coal bed where liquid nitrogen was injected in the bore hole. And a semi-submerged test of liquid nitrogen was performed. The method to model the permeability evolution of rocks subject to liquid nitrogen shock in this paper was proved to be right by the test results. This simulation results are discussed with the hope to provide some insight into understanding the nitrogen cooling practice.展开更多
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern...Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.展开更多
基金Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01C182).
文摘[Objectives]To observe the effect of acupoint liquid nitrogen cryotherapy on the neuro-endocrine-immune network system of lung qi deficiency syndrome during the remission period of bronchial asthma and explore its possible mechanism.[Methods]A total of 100 patients with bronchial asthma were randomly divided into control group and observation group,with 50 cases in each group.The control group was given budesonide spray inhalation treatment,combined with acupoint liquid nitrogen freezing treatment,twice a year for a course of treatment,followed up for 1 year.The other 50 healthy volunteers were included in the healthy group,and no treatment was given in the healthy group.Serum immunoglobulins A,G,E(IgA,IgG,IgE)were detected before and after treatment in each group,serum cytokines[interleukin-4(IL-4),interleukin-10(IL-10),tumor necrosis factor-α(TNF-α),interferon-γ(IFN-γ)],plasma neurotransmitters[substance P(SP),vasoactive intestinal peptide(VIP)].[Results]Before treatment,compared with healthy group,the contents of IgA,IgG,IL-10,IFN-γand VIP in observation group and control group were decreased,while the contents of IgE,IL-4,TNF-αand SP were increased,with statistical significance(P<0.05).After treatment,compared with before treatment,IgA,IgG,IL-10,IFN-γand VIP contents in observation group and control group were increased(P<0.05),and observation group was higher than control group(P<0.05),IgE,IL-4 and SP contents in observation group and control group were decreased(P<0.05).The observation group was lower than the control group(P<0.05).[Conclusions]Acupoint liquid nitrogen cryotherapy may improve the immune function of the body,regulate the release of cytokines and regulate neuromediators,and thus play a role in the prevention and treatment of bronchial asthma.
基金the National Natural Science Foundation(52004285)Fundamental Research Funds for the Central Universities from China University of Mining and Technology-Beijing(JCCXXNY06)the Open Fund of State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University)(WS2021A03).
文摘Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study focuses on the acoustic emission properties of coal specimens treated utilizing liquid nitrogen with varying initial temperatures in a three-point bending environment.Through examination of the load-displacement curves of the considered coal samples,their mechanical properties are also revealed for different initial temperatures and cycling frequencies.The findings demonstrate a gradual decline in the maximum load capacity of coal rock as the temperature rises.Similarly,when subjected to the same temperature,an escalation in the cycling frequency leads to a reduction in the peak load of coal rock.This suggests that both temperature and cycling frequency exert a notable impact on the fracturing efficacy of liquid nitrogen.Freeze-thaw cycling treatments and exposure to high-temperature conditions can activate preexisting damage in the coal rock,and,accordingly,influence its mechanical properties.In particular,throughout the progressive loading of coal rock samples,the failure mechanisms are predominantly characterized by the occurrence of tensile cracks,succeeded by the development,spread,and fracture of shear fissures.
文摘This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blowing nitrogen gas in LF refining process.It is considered that the main factors affecting the nitrogen increasing instability of molten steel are the initial temperature of LF refining,nitrogen relative element,surface active elements[O]and[S]of steel liquid,and bottom blowing rate of ladle.The large-scale production practice shows that T[O]not more than 50×10-6 and[S]is not more than 0.020 in LF refining at the initial temperature of not less than 1570.The liquid steel nitrogen enrichment test is carried out by ladle bottom blowing nitrogen gas after 20 min of refining,the flow rate is set as(6.0~7.0)NL/min per ton,and it is turned to 2 NL/min at 6 min before the end of refining,the nitrogen increasing rate of liquid steel is basically stable at(5~6)×10-6 per minute.
基金Project(2005DKA21208) supported by the R&D Infrastructure and Facility Development Program from the Ministry of Science and Technology of ChinaProject(2010CB630901) supported by the National Basic Research Program of China
文摘The efficiency of a new cryoprotectant,GP,for the preservation of Acidithiobacillus ferrooxidans(A.ferrooxidans) strain DC in liquid nitrogen was investigated.The optimal concentration of this new cryoprotectant for the maximal viable cell recovery and the highest ferrous ion oxidation activity was determined.The results show that 30%(volume fraction) GP is optimal for the cryopreservation with 84.4% of cells surviving,completely oxidizing ferrous ions within 120 h,and growing to a final density of 5.8×107 cell/mL after 6 d in the culture.Furthermore,the optimal residual GP concentration for viable cell recovery after culture of thawed cells in 9K medium for 6 d is 0.6%(volume fraction).At this concentration,strain DC completely oxidizes ferrous ions within 108 h and grows to a final cell density of 6.8×107 mL-1.Thus,GP is a simple,effective cryoprotectant for the preservation of A.ferrooxidans strain DC in liquid nitrogen.
文摘This article described the characteristics of the liquid nitrogen engine's ideal open cycle.Using two interconnecting strokes to achieve the power output can mitigate the trade-off between high efficiency and the potential mechanical complexity of multiple-cylinder engines. The total specific energy of the binary media (methane-nitrogen) cycle system could be much higher than the unitary medium (liquid nitrogen) cycle system. By theoretical analysis, the reasonably acceptable driving range proved the feasibility of the liquid nitrogen engine used for supplying power for a lightweight car.
基金Supported by the National Natural Science Foundation of China (51106119, 81100707), the Fundamental Research Funds for the Central University of China, Doctoral Fund of Ministry of Education (20110201120052) and the National Science and Technology Sur0orting Item (2012BAA08B03).
文摘Multiple size group (MUSIG) model combined with a threedimensional twofluid model were em ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu tion patterns of void fraction in the wallheated tube were analyzed. It was found that the average void fraction in creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub cooled temperature. The local void fraction exhibited a Ushape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient aalnst experimental measurements, which demonstrated the accuracy of the numerical model.
基金Project(2017XKQY012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SEM)are employed to visualize and quantify morphological evolution characteristics of fractures in coal after LN2 thermal shocking treatments.LN2 thermal shocking leads to a denser fracture network than its original state with coal porosity growth rate increasing up to 183.3%.The surface porosity of theμCT scanned layers inside the coal specimen is influenced by LN2 thermal shocking which rises from 18.76%to 215.11%,illustrating the deformation heterogeneity of coal after LN2 thermal shocking.The cracking effect of LN2 thermal shocking on the surface of low porosity is generally more effective than that of high surface porosity,indicating the applicability of LN2 thermal shocking on low-permeability CBM reservoir stimulation.The characteristics of SEM scanned coal matrix in the coal powder and the coal block after the LN2 thermal shocking presented a large amount of deep and shallow progressive scratch layers,fracture variation diversity(i.e.extension,propagation,connectivity,irregularity)on the surface of the coal block and these were the main reasons leading to the decrease of the uniaxial compressive strength of the coal specimen.
文摘AIM To evaluate the efficacy and safety of liquid nitrogen cryotherapy as a primary or rescue treatment for BE,with and without dysplasia,or intramucosal adenocarcinoma (IMC).METHODS This was a retrospective,single-center study carried out in a tertiary care center including 45 patients with BE who was treatment-na?ve or who had persistent intestinal metaplasia(IM),dysplasia,or IMC despite prior therapy.Barrett's mucosa was resected via EMR when clinically appropriate,then patients underwent cryotherapy until eradication or until deemed to have failed treatment.Surveillance biopsies were taken at standard intervals.RESULTS From 2010 through 2014,33 patients were studied regarding the efficacy of cryotherapy.Overall,29 patients (88%) responded to cryotherapy,with 84% having complete regression of all dysplasia and cancer.Complete eradication of cancer and dysplasia was seen in 75% of subjects with IMC; the remaining two subjects did not respond to cryotherapy.Following cryotherapy,15 patients with high-grade dysplasia (HGD) had 30% complete regression,50% IM,and 7% low-grade dysplasia (LGD); one subject had persistent HGD.Complete eradication of dysplasia occurred in all 5 patients with LGD.In 5 patients with IM,complete regression occurred in 4,and IM persisted in one.In 136 cryotherapy sessions amongst 45 patients,adverse events included chest pain (1%),stricture (4%),and one gastrointestinal bleed in a patient on dual antiplatelet therapy who had previously undergone EMR.CONCLUSION Cryotherapy is an efficacious and safe treatment modality for Barrett's esophagus with and without dysplasia or intramucosal adenocarcinoma.
基金This work was supported by the National Natural Science Foundation of China(No.51674247)the project for Fundamental Research Funds for the Central Universities(China University of Mining and Technology)under No.2015XKZD06.
文摘Cryogenic fracturing with liquid nitrogen(LN_(2))offers the benefits of reducing the water consumption and adverse environmental impacts induced by water-based fracturing,as well as potentially enhancing the fracture complexity.We performed a series of laboratory experiments to explore the key mechanisms governing the breakdown pressures of shale during cryogenic fracturing.In this study,cylindrical shale samples were pre-conditioned by exposing a borehole to low-temperature LN_(2) for a certain time period,and then,the samples were fractured using gaseous N_(2) under triaxial stress and a high reservoir temperature.The effects of various key parameters on the breakdown pressure were investigated,including the duration of the low-temperature LN_(2) treatment,the confining pressure,the reservoir temperature,and the direction of the shale bedding relative to the borehole axis.The results demonstrate that the injection of low-temperature LN_(2) as a pre-fracturing fluid into a borehole can significantly reduce the breakdown pressure of the shale during subsequent nitrogen fracturing.This reduction in breakdown pressure can be further intensified by increasing the duration of the LN_(2) pre-conditioning.Without LN_(2) pre-conditioning,the breakdown pressure initially increases and then decreases with increasing reservoir temperature.When LN_(2) pre-conditioning is applied,the breakdown pressure keeps decreasing with increasing reservoir temperature.As the confining pressure increased,the breakdown pressure increased linearly in the tests with and without LN_(2) pre-conditioning.The experimental results demonstrate that LN_(2) preconditioning before N_(2) fracturing is a promising waterless fracturing technique that reduces the breakdown pressure and enhances the fracture complexity.
基金supported by the Youth Program of the National Natural Science Foundation of China(52004299)Major Project of the National Natural Science Foundation of China(52192621)+2 种基金the National Science Foundation for National R&D Program for Major Research Instruments of China(51827804)Beijing Outstanding Young Scientist Program(BJJWZYJH01201911414038)the National Science Foundation for Distinguished Young Scholars of China(51725404).
文摘Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown pressure and results only in single main fracture morphology. Furthermore, HF has also other problems such as the increased risk of seismic events and consuption of large amount of water. In this work, a new stimulation method based on cyclic soft stimulation (CSS) and liquid nitrogen (LN2) fracturing, known as cyclic LN2 fracturing is explored, which we believe has the potential to solve the above issues related to HF. The fracturing performances including breakdown pressure and fracture morphology on granites under true-triaxial stresses are investigated and compared with cyclic water fracturing. Cryo-scanning electron microscopy (Cryo-SEM) tests and X-ray computed tomography (CT) scanning tests were used for quantitative characterization of fracture parameters and to evaluate the cyclic LN2 fracturing performances. The results demonstrate that the cyclic LN2 fracturing results in reduced breakdown pressure, with between 21% and 67% lower pressure compared with using cyclic water fracturing. Cyclic LN2 fracturing tends to produce more complex and branched fractures, whereas cyclic water fracturing usually produces a single main fracture under a low number of cycles and pressure levels. Thermally-induced fractures mostly occur around the interfaces of different particles. This study shows the potential benefits of cyclic LN2 fracturing on HDR. It is expected to provide theoretical guidance for the cyclic LN2 fracturing application in HDR reservoirs.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and controlled to ensure the thermal stability and the dielectric strength as well. To measure the level, capacitance method and differential pressure method are usually used. However, each method has installation difficulties and measurement errors for unsteady state operation with varying system pressure. A new liquid level meter using a 2G HTS conductor is described, which has similar structure with the liquid helium level meter with NbTi filament. The level meter is fabricated with a parallel connected heater, which helps the separation of the superconducting region and normal region, considering the critical temperature, large heat capacity of conductor and cooling characteristics. The level of liquid nitrogen can be obtained from the measured voltage signal along the 2G HTS conductor. Design, fabrication and test results of the new liquid nitrogen level meter are presented.
文摘The kinetics of denitrogenation from liquid steel was studied by using an oxygen-nitrogen analysis system(LECO TC-436) under 1600 degreesC similar to 2813 degreesC conditions. The results show that when [S]=0.005%, nitrogen removal was controlled by nitrogen transfer in liquid diffusion layer, when [S]=0.012% and 0.140%, it was controlled by both nitrogen transfer in liquid diffusion layer and the chemical reaction at the liquid-gas interface below 2250 degreesC, and by nitrogen transfer in liquid diffusion layer under 2250 degreesC similar to 2813 degreesC conditions. The activation energy E-a was 57 kJ/mol for 0.0050%[S], 95 kJ/mol for 0.012%[S], 165 kJ/mol for 0.140%[S]. The resistance of sulphur on nitrogen removal decreased with the temperature rose, and disappeared at 2630 degreesC. Based on the results obtained, it has been answered why the nitrogen in liquid steel can be decreased rapidly by carbon-oxygen reaction under very high oxygen and sulphur content conditions during the BOF, EAF, VOD and AOD steelmaking processes.
文摘A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.
文摘To illustrate the effect of liquid nitrogen preservation on antigenicity of human homograft aortic valve (HAV), human aortic valve tissue were cocultured together with peripheral blood mononuclear cells (PBMCs). Following detections were done to show the difference of antigenicity of HAV indirectly at different period after being preserved in liquid nitrogen: ① 3H TdR incorporation (cpm) was observed after tissue cell cocultured and stimulation index (SI) was calculated;② Density of IL 2 in medium was measured by MTT means. The results indicated that antigenicity of fresh HAV was the strongest; with the prolong of being preserved, antigenicity decreased gradually. It decreased significantly within first 48 h preserved at 4℃, then decreased significantly after preserved in liquid nitrogen for 24 h. 2 weeks later, antigenicity decreased to the lowest level.
基金supported by the National Key R&D Program of China(2022YFE0128300).
文摘The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability.Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks,effectively reducing fracture pressure and establishing intricate fracture networks,thus offering a potential solution for reservoir reconstruction.To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection,sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection,rock temperature,and in-situ stress conditions.The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions,complemented by electron microscope analysis to elucidate the factors driving the complex fracture characteristics of sandstone.The findings revealed a significant decrease in fracture pressure after liquid nitrogen pre-injection,accompanied by a notable increase in the complexity of the fracture network and the roughness of the fracture surface.Moreover,prolonging the duration of liquid nitrogen injection and elevating reservoir temperature further contributed to reducing fracture pressure,consequently enhancing fracture complexity and surface roughness.Conversely,the application of confining pressure amplified fracture pressure while intensifying the degree of fracturing.Notably,the investigation highlighted the increased presence of microcracks in sandstone resulting from liquid nitrogen preinjection,facilitating fluid diffusion during fracturing and yielding lower fracture pressures,thereby enhancing the effectiveness of sandstone reservoir reformation.The research results can provide theoretical guidance for geothermal reservoir reconstruction.
文摘The feasibility of using liquid nitrogen cold trap (LNCT) for the removal of water vapour and alkaline mist from the hydrogen gas stream which is generated from the catalytic and acidic decomposition of sodium borohydride is investigated. Practically, the target application is mobile fuel cells based on hydrogen production from storage in chemical hydrides. The LNCT would be used as a one step purification method with less cost and space requirements instead of applying the conventional purification techniques. Two catalysts were investigated for the production of hydrogen from the aqueous solution of NaBH4 in a small scale packed bed reaction column. The hydrogen generated from the catalytic decomposition of NaBH4 was accompanied by limited quantity of water vapour and alkaline mist. Nonetheless, higher quantities were generated when applying the acidic decomposition of NaBH4 and consequently the utilization of LNCT for H2 purification has proved useful and lead to a reduction in the content of these impurities; thereby the concentration of hydrogen in the outlet stream has increased.
文摘How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nitrogen cooling. FLAC with FISH function was employed to numerically model the rock behavior under cooling. The enhanced perme- ability of the volumetric strain was defined, and the permeability was directly evaluated based on element's volumetric strain. Detailed procedures for implementing the evolution model of permeability in this paper were presented. A case study was carried out to simulate a coal bed where liquid nitrogen was injected in the bore hole. And a semi-submerged test of liquid nitrogen was performed. The method to model the permeability evolution of rocks subject to liquid nitrogen shock in this paper was proved to be right by the test results. This simulation results are discussed with the hope to provide some insight into understanding the nitrogen cooling practice.
基金the National Natural Science Foundation of China(Nos.52272046,52090030,52090031,52122301,51973191)the Natural Science Foundation of Zhejiang Province(LR23E020003)+4 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2021SZ-FR004,2022SZ-TD011,2022SZ-TD012,2022SZ-TD014)Hundred Talents Program of Zhejiang University(188020*194231701/113,112300+1944223R3/003,112300+1944223R3/004)the Fundamental Research Funds for the Central Universities(Nos.226-2023-00023,226-2023-00082,2021FZZX001-17,K20200060)National Key R&D Program of China(NO.2022YFA1205300,NO.2022YFA1205301,NO.2020YFF0204400,NO.2022YFF0609801)“Pioneer”and“Leading Goose”R&D Program of Zhejiang 2023C01190.
文摘Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.