This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest ve...This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.展开更多
Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic ...Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic clouds. The CloudSat satellite launched in 2006 with a 94GHz Cloud Profiling Radar (CPR) may contribute to close this gap. Here we compare one of the key parameters, the cloud liquid water path (LWP) retrieved from CloudSat observations and from microwave radiometer (MWR) data taken during the ASCOS (Arctic Summer Cloud Ocean Study) cruise of the research vessel Oden from August to September 2008. Over the 45 days of the ASCOS cruise, collocations closer than 3 h and 100 km were found in only 9 d, and collocations closer than 1 h and 30 km in only 2 d. The poor correlations in the scatter plots of the two LWP retrievals can be explained by the patchiness of the cloud cover in these two days (August 5th and September 7th), as confirmed by coincident MODIS (Moderate-resolution Imaging Spectroradiome- ter) images. The averages of Oden-observed LWP values are systematically higher (40-70 g m-2) than the corresponding CloudSat observations (0-50 g m2). These are cases of generally low LWP with presumably small droplets, and may be explained by the little sensitivity of the CPR to small droplets or by the surface clutter.展开更多
In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In...In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In this paper,synchronous measurements of an airborne millimeter-wave radar and a hot-wire probe in stratus cloud are used to compare the LWC retrievals of the oceanic and continental particle parameter scheme with diameter less than 50μm and the particle parameter scheme with diameter less than 500μm and 1500μm(scheme 1,scheme 2,scheme 3,and scheme4,respectively).The results show that the particle parameter scheme needs to be selected according to the reflectivity factor when using the physical iterative method to retrieve the LWC and LWP.When the reflectivity factor is less than-30 d BZ,the retrieval error of scheme 1 is the minimum.When the reflectivity factor is greater than-30 d BZ,the retrieval error of scheme 4 is the minimum.Based on the reflectance factor value,the LWP retrievals of scheme 4 are closer to the measurements,the average relative bias is 5.2%,and the minimum relative bias is 4.4%.Compared with other schemes,scheme 4 seems to be more useful for the LWC and LWP retrieval of stratus cloud in China.展开更多
The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness...The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.展开更多
Quantitative estimates of liquid water path (LWP) in clouds using satellite measurements are critical to understanding of cloud properties and the assessment of global climate change. In this paper, the relationship...Quantitative estimates of liquid water path (LWP) in clouds using satellite measurements are critical to understanding of cloud properties and the assessment of global climate change. In this paper, the relationship between microwave brightness temperature (TB) and LWP in the nonprecipitating clouds is studied by using satellite microwave measurements from the TRMM Microwave Imager (TMI) onboard the Tropical Rainfall Measuring Mission (TRMM), together with a radiative transfer model for microwave radiance calculations. Radiative transfer modeling shows that the sensitivity is higher at both 37.0- and 85.5-GHz horizontal polarization channels for the LWP retrievals. Also, the differences between the retrieved values responding to TBs of various channels and the theoretical values are displayed by the model. Based upon above simulations, with taking into account the factor of resolution and retrieval bias for a single,channel, a nonprecipitating cloud LWP in the summer subtropical marine environment retrieval algorithm is formulated by the combination of the two TMI horizontal polarization channels, 37.0 and 85.5 GHz. Moreover,by using TMI measurements (1Bll), this algorithm is applied to retrieving respectively LWPs for clear sky, nonprecipitating clouds, and typhoon precipitating clouds. In the clear sky case, the LWP cl^anges from -1 to 1 g m-2, and its mean value is about 10^-5 g m^-2. It indicates that, using this combination retrieval algorithm, there are no obvious systemic deviations when the LWP is low enough. The LWP values varying from 0 to 1000 g m^-2 in nonprecipitating clouds are reasonable, and its distribution pattern is very similar to the detected results in the visible channel of Visible and Infrared Scanner (VIRS) on the TRMM. In typhoon precipitating clouds, there is much more proportion of high LWP in the mature phase than the early stage. When surface rainfall rate is lower than 5 mm h^-1, the LWP increases with increasing rainfall rate.展开更多
This study investigated the second indirect climatic effect of anthropogenic aerosols,including sulfate,organic carbon(OC) ,and black carbon(BC) ,over East Asia.The seasonal variation of the climatic response to the s...This study investigated the second indirect climatic effect of anthropogenic aerosols,including sulfate,organic carbon(OC) ,and black carbon(BC) ,over East Asia.The seasonal variation of the climatic response to the second indirect effect was also characterized.The simulation period for this study was 2006.Due to a decrease in autoconversion rate from cloud water to rain as a result of aerosols,the cloud liquid water path(LWP) ,and radiative flux(RF) at the top of the atmosphere(TOA) changed dramatically,increasing by 14.3 g m-2 and decreasing by-4.1 W m-2 in terms of domain and annual average.Both LWP and RF changed most in autumn. There were strong decreases in ground temperature in Southwest China,the middle reaches of the Yangtze River in spring and autumn,while maximum cooling of up to-1.5 K occurred in the Chongqing district.The regional and annual mean change in ground temperature reached-0.2 K over eastern China.In all seasons except summer,precipitation generally decreased in most areas north of the Yangtze River,whereas precipitation changed little in South China.Precipitation changed most in summer,with alternating bands of increasing(~40 mm) and decreasing(~40 mm) precipitation appearing in eastern China.Precipitation decreased by 1.5-40 mm over large areas of Northeast China and the Huabei Plain.The domain and annual mean change in precipitation was approximately-0.3 mm over eastern China.The maximum reduction in precipitation occurred in summer,with mean absolute and relative changes of-1.2 mm and-3.8%over eastern China.This study revealed considerable climate responses to the second indirect effect of aerosols over specific regions of China.展开更多
The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from t...The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from the Total Sky Imager (TSI), cloud base heights from the Ceilometer, and vertical temperature profiles from the Balloon-Borne Sounding System (BBSS). Six cases were chosen in summer, and seven in autumn. The averaged cloud effective radii (re), cloud optical depth (COD), aerosol total light scattering coefficient (a), and liquid water path (LWP) are, respectivey, 6.47 μm, 35.4, 595.9 mm-1, 0.19 mm in summer, and 6.07 μm, 96.0, 471.7 mm-1, 0.37 mm in autumn. The correlation coefficient between re and tc was found to change from negative to positive value as LWP increases.展开更多
A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path(LWP) and ice water path(IWP).These cloud contents can be predicted with radiances at the Advanced Mic...A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path(LWP) and ice water path(IWP).These cloud contents can be predicted with radiances at the Advanced Microwave Sounding Unit(AMSU) channels(23.8,31.4,89,and 150 GHz) through linear regression models.The scheme is demonstrated by an analysis of a two-dimensional cloud resolving model simulation that is imposed by a forcing derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The rainfall is considered convective if associated LWP is larger than 1.91 mm or IWP is larger than1.70 mm.Otherwise,the rainfall is stratiform.The analysis of surface rainfall budget demonstrates that this new scheme is physically meaningful.展开更多
基金This work was jointly supported by the 973 Project(Grant No.2005CB321703)the National Natural Science Foundation of China(Grant No.40221503)the Chinese Academy of Sciences International Partnership Creative Group entitled"The Climate System Model Development and Application Studies".
文摘This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.
基金ASCOS was made possible by grants from DAMOCLES and the Knut and Alice Wallenberg Foundation,and was organized by the Swedish Polar Research Secretariat
文摘Arctic clouds strongly influence the regional radiation balance, temperature, melting of sea ice, and freezing of sea water. Despite their importance, there is a lack of systematic and reliabie observations of Arctic clouds. The CloudSat satellite launched in 2006 with a 94GHz Cloud Profiling Radar (CPR) may contribute to close this gap. Here we compare one of the key parameters, the cloud liquid water path (LWP) retrieved from CloudSat observations and from microwave radiometer (MWR) data taken during the ASCOS (Arctic Summer Cloud Ocean Study) cruise of the research vessel Oden from August to September 2008. Over the 45 days of the ASCOS cruise, collocations closer than 3 h and 100 km were found in only 9 d, and collocations closer than 1 h and 30 km in only 2 d. The poor correlations in the scatter plots of the two LWP retrievals can be explained by the patchiness of the cloud cover in these two days (August 5th and September 7th), as confirmed by coincident MODIS (Moderate-resolution Imaging Spectroradiome- ter) images. The averages of Oden-observed LWP values are systematically higher (40-70 g m-2) than the corresponding CloudSat observations (0-50 g m2). These are cases of generally low LWP with presumably small droplets, and may be explained by the little sensitivity of the CPR to small droplets or by the surface clutter.
基金National Natural Science Foundation of China(41575031,41175089)China Postdoctoral Science Foundation(2015M580124)Key Laboratory of Geo-Information Engineering(S18701)
文摘In the application of the physical iterative method to retrieve millimeter-wave radar liquid water content(LWC)and liquid water path(LWP),particle parameter scheme is the main factor affecting retrieval performance.In this paper,synchronous measurements of an airborne millimeter-wave radar and a hot-wire probe in stratus cloud are used to compare the LWC retrievals of the oceanic and continental particle parameter scheme with diameter less than 50μm and the particle parameter scheme with diameter less than 500μm and 1500μm(scheme 1,scheme 2,scheme 3,and scheme4,respectively).The results show that the particle parameter scheme needs to be selected according to the reflectivity factor when using the physical iterative method to retrieve the LWC and LWP.When the reflectivity factor is less than-30 d BZ,the retrieval error of scheme 1 is the minimum.When the reflectivity factor is greater than-30 d BZ,the retrieval error of scheme 4 is the minimum.Based on the reflectance factor value,the LWP retrievals of scheme 4 are closer to the measurements,the average relative bias is 5.2%,and the minimum relative bias is 4.4%.Compared with other schemes,scheme 4 seems to be more useful for the LWC and LWP retrieval of stratus cloud in China.
基金Supported by the National Natural Science Foundation of China(91337218 and 41475103)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406008)
文摘The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.
基金the NSFC under Grant Nos.40730950,40675027,and 40605010the Cooperate Project of LAPC,CAS(LAPCKF-2006-19),and AXA/EORC
文摘Quantitative estimates of liquid water path (LWP) in clouds using satellite measurements are critical to understanding of cloud properties and the assessment of global climate change. In this paper, the relationship between microwave brightness temperature (TB) and LWP in the nonprecipitating clouds is studied by using satellite microwave measurements from the TRMM Microwave Imager (TMI) onboard the Tropical Rainfall Measuring Mission (TRMM), together with a radiative transfer model for microwave radiance calculations. Radiative transfer modeling shows that the sensitivity is higher at both 37.0- and 85.5-GHz horizontal polarization channels for the LWP retrievals. Also, the differences between the retrieved values responding to TBs of various channels and the theoretical values are displayed by the model. Based upon above simulations, with taking into account the factor of resolution and retrieval bias for a single,channel, a nonprecipitating cloud LWP in the summer subtropical marine environment retrieval algorithm is formulated by the combination of the two TMI horizontal polarization channels, 37.0 and 85.5 GHz. Moreover,by using TMI measurements (1Bll), this algorithm is applied to retrieving respectively LWPs for clear sky, nonprecipitating clouds, and typhoon precipitating clouds. In the clear sky case, the LWP cl^anges from -1 to 1 g m-2, and its mean value is about 10^-5 g m^-2. It indicates that, using this combination retrieval algorithm, there are no obvious systemic deviations when the LWP is low enough. The LWP values varying from 0 to 1000 g m^-2 in nonprecipitating clouds are reasonable, and its distribution pattern is very similar to the detected results in the visible channel of Visible and Infrared Scanner (VIRS) on the TRMM. In typhoon precipitating clouds, there is much more proportion of high LWP in the mature phase than the early stage. When surface rainfall rate is lower than 5 mm h^-1, the LWP increases with increasing rainfall rate.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No.XDA05100502)+1 种基金the R&D Special Fund for Public Welfare Industry(Meteorology) (Grant No.GYHY200906020)100 Talents Program of the Chinese Academy of Sciences
文摘This study investigated the second indirect climatic effect of anthropogenic aerosols,including sulfate,organic carbon(OC) ,and black carbon(BC) ,over East Asia.The seasonal variation of the climatic response to the second indirect effect was also characterized.The simulation period for this study was 2006.Due to a decrease in autoconversion rate from cloud water to rain as a result of aerosols,the cloud liquid water path(LWP) ,and radiative flux(RF) at the top of the atmosphere(TOA) changed dramatically,increasing by 14.3 g m-2 and decreasing by-4.1 W m-2 in terms of domain and annual average.Both LWP and RF changed most in autumn. There were strong decreases in ground temperature in Southwest China,the middle reaches of the Yangtze River in spring and autumn,while maximum cooling of up to-1.5 K occurred in the Chongqing district.The regional and annual mean change in ground temperature reached-0.2 K over eastern China.In all seasons except summer,precipitation generally decreased in most areas north of the Yangtze River,whereas precipitation changed little in South China.Precipitation changed most in summer,with alternating bands of increasing(~40 mm) and decreasing(~40 mm) precipitation appearing in eastern China.Precipitation decreased by 1.5-40 mm over large areas of Northeast China and the Huabei Plain.The domain and annual mean change in precipitation was approximately-0.3 mm over eastern China.The maximum reduction in precipitation occurred in summer,with mean absolute and relative changes of-1.2 mm and-3.8%over eastern China.This study revealed considerable climate responses to the second indirect effect of aerosols over specific regions of China.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-QN201)the National Basic Research Program of China(973 Program)(2006CB403706 and 2010CB950804)the National Natural Science Foundation of China(40775009 and 40875084)
文摘The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from the Total Sky Imager (TSI), cloud base heights from the Ceilometer, and vertical temperature profiles from the Balloon-Borne Sounding System (BBSS). Six cases were chosen in summer, and seven in autumn. The averaged cloud effective radii (re), cloud optical depth (COD), aerosol total light scattering coefficient (a), and liquid water path (LWP) are, respectivey, 6.47 μm, 35.4, 595.9 mm-1, 0.19 mm in summer, and 6.07 μm, 96.0, 471.7 mm-1, 0.37 mm in autumn. The correlation coefficient between re and tc was found to change from negative to positive value as LWP increases.
基金National Key Basic Research and Development Project of China(2013CB430103,2015CB453201)National Natural Science Foundation of China(41475039,41375058,41530427)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path(LWP) and ice water path(IWP).These cloud contents can be predicted with radiances at the Advanced Microwave Sounding Unit(AMSU) channels(23.8,31.4,89,and 150 GHz) through linear regression models.The scheme is demonstrated by an analysis of a two-dimensional cloud resolving model simulation that is imposed by a forcing derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The rainfall is considered convective if associated LWP is larger than 1.91 mm or IWP is larger than1.70 mm.Otherwise,the rainfall is stratiform.The analysis of surface rainfall budget demonstrates that this new scheme is physically meaningful.