Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize...Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.展开更多
Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-...Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.展开更多
A simplified turbulent model and a modified k-Σ two equation model are proposed todescribe the liquid velocity profiles in a bubble column taking into consideration of the effect of gasdrag force and gas hold-up.In t...A simplified turbulent model and a modified k-Σ two equation model are proposed todescribe the liquid velocity profiles in a bubble column taking into consideration of the effect of gasdrag force and gas hold-up.In the simplified mode1 the Reynolds equation of motion was adoptedand the turbulent viscosity was calculated from an empirical correlation which was deduced fromour experimental data.The calculated liquid velocity profiles were compared between the proposedmodel and the standard k-Σ two equation model as well as experimental data.The result shows thatthe proposed model simulates and predicts the liquid velocity field most satisfactorily and in goodagreement with the experimental measurement.展开更多
Drift velocity is a very important paramcter for predictirg the pool volumetric void fraction. Two-phase system of gas and high viscous liquids pool is encountered in various engineering applications. A review of the ...Drift velocity is a very important paramcter for predictirg the pool volumetric void fraction. Two-phase system of gas and high viscous liquids pool is encountered in various engineering applications. A review of the literature shows no data for explaining the effect of highly viscous liquids on the drift velocity. This paper’s analysis shows that there is a considerable influence. It is shown that the foaming behaviour of liquids is dependent on the surface properties. For some highly viscous liquids at a given superficial gas velocity, the viscosity changes with time. The effect of "foam" and "time" on drift velocity is clearly elucidated.展开更多
Acquiring detail knowledge of the situation about release of medicial liquid is a key problem in clinical practice. By means of imitating the condition in the human body, the authors determined the osmotic velocity of...Acquiring detail knowledge of the situation about release of medicial liquid is a key problem in clinical practice. By means of imitating the condition in the human body, the authors determined the osmotic velocity of anticarcinogen, antituberculotic, antibiotic and other medicines in porous ceramic tubes. In this paper, the methods to determine the osmotic velocity of anticarcinogen and to calculate the experimental data are mainly introduced.展开更多
A liquid film flow over a flat plate is investigated by prescribing the unsteady interface velocity. With this prescribed surface velocity, the governing Navier–Stokes(NS) equations are transformed into a similarity ...A liquid film flow over a flat plate is investigated by prescribing the unsteady interface velocity. With this prescribed surface velocity, the governing Navier–Stokes(NS) equations are transformed into a similarity ordinary differential equation, which is solved numerically. The flow characteristics is controlled by an unsteadiness parameter S and the flow direction parameter Λ. The results show that solutions only exist for a certain range of the unsteadiness parameter, i.e., S≤1 for Λ =-1 and S≤-2.815877 for Λ = 1. In the solution domain,the dimensionless liquid film thickness β decreases with S for both the cases. The wall shear stress increases with the decrease of S for Λ =-1. However, for Λ =-1 the shear stress magnitude first decreases and then increases with the decrease of S. There are no zero crossing points for the velocity profiles for both the cases. The profiles of velocity stay either positive or negative all the time, except for the wall zero velocity. Consequently,the vertical velocity becomes a monotonic function. To maintain the prescribed velocity, mass transpiration is generally needed, but for the shrinking film case it is possible to have an impermeable wall. The results are also an exact solution to the full NS equations.展开更多
A new model without any fitting parameter for estimating the mean liquid recirculating velocity has been derived from previous work directly. The prediction agrees with experimental data reasonably well. Accurency of ...A new model without any fitting parameter for estimating the mean liquid recirculating velocity has been derived from previous work directly. The prediction agrees with experimental data reasonably well. Accurency of prediction from the new model is comparable with the models reported in the literature. However, the new model has a potential capability to predict the average liquid recirculation velocity at elevated pressure bubble columns since n and c is developed under pressure. However this needs to be further tested experimentally.展开更多
This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well a...This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well as in high-resolution single-frequncy or narrowband applications are presented. Deviations of the field configuration in real cells frtxn that in an ideal resonator are discussed and relations for the mode spectrum of cavity fields are given. Recent resonator measurement procedures and methods of data evaluation are mentioned briefly. Some examples of measurements show the extended usability of ultrasonic resonator techniques in basic science and in a wide range of applications for rrkaterials characterization, in manufacturing processes, as well as in control routines.展开更多
The flow field or multidimensional velocity distribution of the coolant in fuel rod bundles of the reactor core in pressurized water reactors (PWRs) is an important parameter that is revealed through experimental inve...The flow field or multidimensional velocity distribution of the coolant in fuel rod bundles of the reactor core in pressurized water reactors (PWRs) is an important parameter that is revealed through experimental investigations. This paper presents the two-dimensional (2D) velocity profile measurement using a two-element ultrasonic transducer with both elements acting as a transceiver. The size of the transducer is minimized for compactness, leading to a narrow sound field appropriate for applications in fuel rod bundle flow. Furthermore, the transducer’s sound pressure is evaluated via simulations and experimental measurements. In order to confirm the ability of the ultrasonic velocity profiler (UVP) with a two-element transducer, the experimental measurement is conducted in turbulent horizontal pipe flow. The 2D velocity vector profile is obtained, and then the measurement in swirling flow is conducted. The 2D velocity profile in an axial and radial plane is obtained utilizing the UVP measurement. Lastly, the ability of the UVP to derive the 2D velocity profile in the narrow area of the rod bundles is demonstrated.展开更多
Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wa...Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.展开更多
The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes o...The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.展开更多
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two...Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.展开更多
Cleats are the main channels for fluid transport in coal reservoirs.However,the microscale flow characteristics of both gas and water phases in primary cleats have not been fully studied as yet.Accordingly,the local m...Cleats are the main channels for fluid transport in coal reservoirs.However,the microscale flow characteristics of both gas and water phases in primary cleats have not been fully studied as yet.Accordingly,the local morphological features of the cleat were determined using image processing technology and a transparent cleat structure model was constructed by microfluidic lithography using the multiphase fluid visualization test system.Besides,the effect of microchannel tortuosity characteristics on two‐phase flow was analyzed in this study.The results are as follows:(1)The local width of the original cleat structure of coal was strongly nonhomogeneous.The cleats showed contraction and expansion in the horizontal direction and undulating characteristics in the vertical direction.(2)The transient flow velocity fluctuated due to the structural characteristics of the primary cleat.The water‐driven gas interface showed concave and convex instability during flow,whereas the gas‐driven water interface presented a relatively stable concave surface.(3)The meniscus advanced in a symmetrical pattern in the flat channel,and the flow stagnated due to the influence of undulation points in a partially curved channel.The flow would continue only when the meniscus surface bypassed the stagnation point and reached a new equilibrium position.(4)Enhanced shearing at the gas-liquid interface increased the gas‐injection pressure,which in turn increased residual liquids in wall grooves and liquid films on the wall surface.展开更多
This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with u...This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>展开更多
基金supported by the National Natural Science Foundation of China(41974139,42274148,42074142)。
文摘Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.
基金Supported by the National Natural Science Foundation of China(No.51478297)Program of Introducing Talents of Discipline(No.B13011)
文摘Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.
基金Supported by the National Natural Science Foundation of China(No.29376253)and the Foundation of State Key Laboratory of Chemical Engineering.
文摘A simplified turbulent model and a modified k-Σ two equation model are proposed todescribe the liquid velocity profiles in a bubble column taking into consideration of the effect of gasdrag force and gas hold-up.In the simplified mode1 the Reynolds equation of motion was adoptedand the turbulent viscosity was calculated from an empirical correlation which was deduced fromour experimental data.The calculated liquid velocity profiles were compared between the proposedmodel and the standard k-Σ two equation model as well as experimental data.The result shows thatthe proposed model simulates and predicts the liquid velocity field most satisfactorily and in goodagreement with the experimental measurement.
文摘Drift velocity is a very important paramcter for predictirg the pool volumetric void fraction. Two-phase system of gas and high viscous liquids pool is encountered in various engineering applications. A review of the literature shows no data for explaining the effect of highly viscous liquids on the drift velocity. This paper’s analysis shows that there is a considerable influence. It is shown that the foaming behaviour of liquids is dependent on the surface properties. For some highly viscous liquids at a given superficial gas velocity, the viscosity changes with time. The effect of "foam" and "time" on drift velocity is clearly elucidated.
文摘Acquiring detail knowledge of the situation about release of medicial liquid is a key problem in clinical practice. By means of imitating the condition in the human body, the authors determined the osmotic velocity of anticarcinogen, antituberculotic, antibiotic and other medicines in porous ceramic tubes. In this paper, the methods to determine the osmotic velocity of anticarcinogen and to calculate the experimental data are mainly introduced.
文摘A liquid film flow over a flat plate is investigated by prescribing the unsteady interface velocity. With this prescribed surface velocity, the governing Navier–Stokes(NS) equations are transformed into a similarity ordinary differential equation, which is solved numerically. The flow characteristics is controlled by an unsteadiness parameter S and the flow direction parameter Λ. The results show that solutions only exist for a certain range of the unsteadiness parameter, i.e., S≤1 for Λ =-1 and S≤-2.815877 for Λ = 1. In the solution domain,the dimensionless liquid film thickness β decreases with S for both the cases. The wall shear stress increases with the decrease of S for Λ =-1. However, for Λ =-1 the shear stress magnitude first decreases and then increases with the decrease of S. There are no zero crossing points for the velocity profiles for both the cases. The profiles of velocity stay either positive or negative all the time, except for the wall zero velocity. Consequently,the vertical velocity becomes a monotonic function. To maintain the prescribed velocity, mass transpiration is generally needed, but for the shrinking film case it is possible to have an impermeable wall. The results are also an exact solution to the full NS equations.
文摘A new model without any fitting parameter for estimating the mean liquid recirculating velocity has been derived from previous work directly. The prediction agrees with experimental data reasonably well. Accurency of prediction from the new model is comparable with the models reported in the literature. However, the new model has a potential capability to predict the average liquid recirculation velocity at elevated pressure bubble columns since n and c is developed under pressure. However this needs to be further tested experimentally.
文摘This review gives a short introduction into the principles of ultrasonic measurement techniques for liquids, using cavity resonators. Guidelines for the resonator design in broad-band ultrasonic stxctroscopy as well as in high-resolution single-frequncy or narrowband applications are presented. Deviations of the field configuration in real cells frtxn that in an ideal resonator are discussed and relations for the mode spectrum of cavity fields are given. Recent resonator measurement procedures and methods of data evaluation are mentioned briefly. Some examples of measurements show the extended usability of ultrasonic resonator techniques in basic science and in a wide range of applications for rrkaterials characterization, in manufacturing processes, as well as in control routines.
文摘The flow field or multidimensional velocity distribution of the coolant in fuel rod bundles of the reactor core in pressurized water reactors (PWRs) is an important parameter that is revealed through experimental investigations. This paper presents the two-dimensional (2D) velocity profile measurement using a two-element ultrasonic transducer with both elements acting as a transceiver. The size of the transducer is minimized for compactness, leading to a narrow sound field appropriate for applications in fuel rod bundle flow. Furthermore, the transducer’s sound pressure is evaluated via simulations and experimental measurements. In order to confirm the ability of the ultrasonic velocity profiler (UVP) with a two-element transducer, the experimental measurement is conducted in turbulent horizontal pipe flow. The 2D velocity vector profile is obtained, and then the measurement in swirling flow is conducted. The 2D velocity profile in an axial and radial plane is obtained utilizing the UVP measurement. Lastly, the ability of the UVP to derive the 2D velocity profile in the narrow area of the rod bundles is demonstrated.
基金Supported by National Natural Science Foundation of China(21978171)。
文摘Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.
基金Supported by the National Natural Science Foundation of China(Grant No.59995460)
文摘The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.
基金Project supported by the Talent Fund of the Ministry of Communication of China(No.95050508) the Fund of Western Communication of China(No.200332822047) the Key Science Fund of the Ministry of Communication of China(No.95060233)
文摘Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.
基金National Natural Science Foundation of China,Grant/Award Numbers:52074169,52174159,522741280。
文摘Cleats are the main channels for fluid transport in coal reservoirs.However,the microscale flow characteristics of both gas and water phases in primary cleats have not been fully studied as yet.Accordingly,the local morphological features of the cleat were determined using image processing technology and a transparent cleat structure model was constructed by microfluidic lithography using the multiphase fluid visualization test system.Besides,the effect of microchannel tortuosity characteristics on two‐phase flow was analyzed in this study.The results are as follows:(1)The local width of the original cleat structure of coal was strongly nonhomogeneous.The cleats showed contraction and expansion in the horizontal direction and undulating characteristics in the vertical direction.(2)The transient flow velocity fluctuated due to the structural characteristics of the primary cleat.The water‐driven gas interface showed concave and convex instability during flow,whereas the gas‐driven water interface presented a relatively stable concave surface.(3)The meniscus advanced in a symmetrical pattern in the flat channel,and the flow stagnated due to the influence of undulation points in a partially curved channel.The flow would continue only when the meniscus surface bypassed the stagnation point and reached a new equilibrium position.(4)Enhanced shearing at the gas-liquid interface increased the gas‐injection pressure,which in turn increased residual liquids in wall grooves and liquid films on the wall surface.
文摘This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>