期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Fluorescence and preparation of Sr_2(P_2O_7 ):Ce,Tb phosphate by co-precipitation method 被引量:8
1
作者 Cheng-Guo Ma Wei Zheng +1 位作者 Li-Guo Jin Li-Min Dong 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期420-424,共5页
The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase struc... The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase structure, grain size, surface morphology, and luminescent properties of phosphors were investigated by X-ray diffraction, scanning electron microscope, trans-mission electron microscope, and fluorescence spectrum. The results show that the product of precursor annealed at 1,100 ℃ is Sr2(P2O7):Ce,Tb, which belongs to ortho-rhombic phase. The powder is spherical and the size dis-tribution is in micron grade. The sample with the molar ratio of Sr/Tb/Ce of 100.0:0.4:0.6 shows the best fluores-cence effect annealed at 1,100 ℃ for 3 h. The phosphors produce green fluorescence by being excitated with ultra-violet radiation of 254 nm wavelength, and the main emission peak is at 547 nm. The Sr2(P2O7):Ce,Tb phos-phors synthesized by co-precipitation method of precursors at ambient temperature is a kind of efficient green-emitting phosphors. 展开更多
关键词 PHOSPHORS co-precipitation method Rareearth phosphate PHOSPHORESCENCE
下载PDF
Effects of synthesis conditions on the structural and electrochemical properties of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material via oxalate co-precipitation method 被引量:6
2
作者 TIAN Hua YE Naiqing +1 位作者 LIU Dan LI Wenqun 《Rare Metals》 SCIE EI CAS CSCD 2008年第6期575-579,共5页
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc... The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature. 展开更多
关键词 lithium ion batteries oxalate co-precipitation method cathode materials electrochemical performance
下载PDF
Preparation and Characterization of Y_3Sc_2Ga_3O_(12) Nano-Polycrystalline Powders by Co-Precipitation Method 被引量:1
3
作者 苏静 张庆礼 +3 位作者 邵淑芳 谷长江 万松明 殷绍唐 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第3期302-305,共4页
In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the... In order to grow high-quality gallium garnet crystals,polycrystalline materials were used as starting materials.YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator,and the precursor was then sintered at different temperatures.The results showed that the feasible pH range was 8.3~9.84 in the process of co-precipitation reaction.The YSGG precursor and the powders sintered at different temperatures were characterized by IR,XRD and TEM methods.It was found that the precursor transformed to pure YSGG polycrystalline phase at 800 ℃.YSGG nano-polycrystalline powders sintered at 800~1000 ℃ were well dispersed and the sizes of the YSGG grains were about 40~100 nm. 展开更多
关键词 co-precipitation method YSGG nano-polycrystalline powder rare earths
下载PDF
Preparation and Magnetic Properties of Mn-Zn Ferrites by the Co-precipitation Method 被引量:1
4
作者 李雪 张俊喜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第6期875-878,共4页
Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed so... Mn-Zn ferrites (Mn1-xZnxFe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed solution and NH4HCO3 solution on their microstructures and magnetic properties were discussed. The samples were characterized by X-ray diffraction (XRD) and magnetization measurement instrument. Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5. For samples of different pH values, only one phase was found when pH values were 7.0, 8.0 and 9.0. The sample with pH value of 7.0 exhibited the highest saturation magnetic induction, the lowest coercive force, and crystallized best. For samples of different R values with pH value of 7.0, only one phase was observed in all samples, and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force. The composition has mainly afected the magnetic properties, and the saturation magnetic induction increases with the increase of the content of Zn (x), but decreases when x is beyond 0.6. The trend of coercive force is on the contrary. However, no magnetism is exhibited when the x value is up to 0.8. 展开更多
关键词 co-precipitation method MICROSTRUCTURE magnetic property Mn-Zn ferrite
下载PDF
Characterization and ultraviolet-visible shielding property of samarium-cerium compounds containing Sm_(2)O_(2)S prepared by co-precipitation method 被引量:1
5
作者 Yanping Li Xue Bian +3 位作者 Xun Jin Peng Cen Wenyuan Wu Gaofeng Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1809-1816,共8页
Since ultraviolet(UV)light,as well as blue light,which is part of visible light,is harmful to skin,samarium-cerium compounds containing Sm_(2)O_(2)S were synthesized by co-precipitation method.This kind of compounds b... Since ultraviolet(UV)light,as well as blue light,which is part of visible light,is harmful to skin,samarium-cerium compounds containing Sm_(2)O_(2)S were synthesized by co-precipitation method.This kind of compounds blocks not only UV light,but also blue light.The minimum values of average transmittance(360-450 nm)and band gap of samarium-cerium compounds were 8.90%and 2.76 eV,respectively,which were less than 13.96%and 3.01 eV of CeO_(2).Elemental analysis(EA),X-ray diffraction(XRD),Fourier transformation infrared(FTIR),and Raman spectra determined that the samples contained Ce_(4)O_(7),Sm_(2)O_(2)S,Sm_(2)O_(3),and Sm_(2)O_(2)SO_(4).The microstructure of samples was analyzed by scanning and transmission electron microscopies(SEM and TEM).X-ray photoelectron spectrum(XPS)showed that cerium had Ce^(3+)and Ce^(4+) valence states,and oxygen was divided into lattice oxygen and oxygen vacancy,which was the direct cause of the decrease of average transmittance and band gap. 展开更多
关键词 band gap co-precipitation method samarium-cerium compound ultraviolet light blue light
下载PDF
Yttrium-Doped SnO_2 Prepared by Co-Precipitation Method for Lithium-Ion Battery Anodes 被引量:1
6
作者 李超 毕磊 +4 位作者 方少明 徐甲强 吴诗德 谢冰 陈荣峰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期508-511,共4页
SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microsc... SnO2 doped with Y were prepared by co-precipitation method and tested in lithium-ion cells. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns presented that the all the as-prepared materials had tetragonal rutile structure but a second phase (Y2O3) was observed when Y content reached 4%. TEM micrograph indicated that Y doped SnO2 had a small particle size ranging from 20 to 25 nm. The electrochemical properties for an anode active material in lithium-ion batteries were investigated at room temperature, including the observed capacity involved in the first-discharge and the reversible capacity values during subsequent charge-discharge cycles. The as-prepared Y-doped SnO2 exhibited promising electrochemical properties as anodes for lithium-ion batteries. 展开更多
关键词 Y-doped SnO_2 co-precipitation method anode material lithium-ion battery rare earths
下载PDF
Synthesis of LaPO_4:Ce,Terbium by Co-Precipitation Method 被引量:1
7
作者 龙志奇 任乐 +4 位作者 朱兆武 崔大力 赵娜 李明来 黄小卫 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期137-140,共4页
The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the b... The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the bottom water, and the charging rate on the physical properties, such as particle size, were investigated. It is found that the particle size of the powder is controllable by adjusting acidity in bottom water and charging rate. The powder with diameter size of 3 to 5μm was obtained. Its XRD and SEM were analyzed. XRD patterns of the as-prepared green phosphor powders display the typical peaks of CePO4. SEM shows that the morphology of powders is ball-shaped. 展开更多
关键词 LaPO4:Ce Tb PRECURSOR green phosphors co-precipitation method rare earths
下载PDF
An efficient nano-adsorbent via surfactants/dual surfactants assisted ultrasonic co-precipitation method for sono-removal of monoazo and diazo anionic dyes 被引量:1
8
作者 Marwa M.Ibrahim 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期225-236,共12页
To preserve the environment for civilization,we should remove the pollutants like toxic dyes by friendly and cost efficacious method.In this study,the effect of surfactants or mixed surfactants on physicochemical,opti... To preserve the environment for civilization,we should remove the pollutants like toxic dyes by friendly and cost efficacious method.In this study,the effect of surfactants or mixed surfactants on physicochemical,optical and adsorption properties of ternary mixed oxide CeO_(2)-ZrO_(2)-Al_(2) O_3(CZA) are investigated.The ternary mixed oxide CZA was prepared by surfactants or mixed surfactants assisted ultrasonic coprecipitation method.The physicochemical and optical properties are estimated by different techniques like XRD,TEM,EDX,FTIR,S_(BET) and UV-Vis/DR.The CZA_T and CZA_C have hybrid shapes and high surface area.The adsorption properties of ternary mixed oxides adsorbents were characterized by sono-removing anionic dyes such as Congo red(CR) and Remazol red RB-133(RR).The different factors like contact time,different dye concentrations and temperatures also studied.The kinetics and isotherms applications showed that,the adsorption process was followed pseudo second order kinetics and the Freundlich isotherm model.Also,the adsorption is spontaneous and endothermic process through the thermodynamic study.Finally,the results showed that the ternary mixed oxide nano-adsorbent(CeO_(2)-ZrO_(2)-Al_(2) O_3) is promising and functional materials for anionic dye sweep from wastewater. 展开更多
关键词 CeO_(2)-ZrO_(2)-Al_(2)O_3 SURFACTANTS Ultrasonic co-precipitation method Optical properties Wastewater Adsorption
下载PDF
Synthesis of M1-3xAl2O4:Eu2+x/Dy3+ 2x(M^2+= Sr^2+, Ca^2+ and Ba^2+) phosphors with long-lasting phosphorescence properties via co-precipitation method 被引量:1
9
作者 Jinkai Li Bin Liu +2 位作者 Qi Chen Yizhong Lu Zongming Liu 《Chemical Reports》 2019年第2期112-117,共6页
The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with r... The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display. 展开更多
关键词 long AFTERGLOW material co-precipitation method M1-3xAl2O4:Eu2+ x/Dy3+ 2x(M2+= Sr2+ Ca2+ and Ba2+) PHOSPHORS luminescent property
下载PDF
Green Emitting Phosphor M_3(PO_4)_2∶Ce, Tb (M=Mg, Ca, Sr, Ba) Prepared by Co-Precipitation Method
10
作者 董丽敏 张耀明 +2 位作者 韩志东 吴泽 张显友 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期290-293,共4页
The M3-3x(PO4)2∶2xCe, xTb(M=Mg, Ca, Sr, Ba) phosphors were prepared by coprecipitation in this paper. Their phase structures, morphologies and luminescent properties were investigated by X-ray diffractometer, field e... The M3-3x(PO4)2∶2xCe, xTb(M=Mg, Ca, Sr, Ba) phosphors were prepared by coprecipitation in this paper. Their phase structures, morphologies and luminescent properties were investigated by X-ray diffractometer, field emission scanning electron microscopy and fluorospectrophotometer. The results indicate that the Ce3+ and Tb3+ enteres the host lattice because the XRD patterns of alkaline earth phosphate show no impurity phase, the SEM shows the spherical particles with an average size about 1 μm. The emission and excitation spectra are similar to rare earth phosphate. Concentration quenching of the Sr3(PO4)2∶Ce, Tb emission intensity was not observed even when the Tb3+ increases to 0.05, while the maximum emission intensity appears when x=0.04 in M3-3x(PO4)2∶2xCe, xTb(M=Ca, Ba) emission spectrum. 展开更多
关键词 alkali earth phosphate green phosphor co-precipitation method LUMINESCENT rare earths
下载PDF
Structural and Optical Properties of Mg<SUB>1-x</SUB>Zn<SUB>x</SUB>Fe<SUB>2</SUB>O<SUB>4</SUB>Nano-Ferrites Synthesized Using Co-Precipitation Method
11
作者 Abdalrawf I. Ahmed Mohamed A. Siddig +2 位作者 Abdulmajid A. Mirghni Mohamed I. Omer Abdelrahman A. Elbadawi 《Advances in Nanoparticles》 2015年第2期45-52,共8页
In this work, the Mg1-x Znx Fe2 O4 Nanoferrites (where x = 0.0, 0.2, 0.4, 0.6 and 0.8) was synthesized using co-precipitation method. The investigation of structural and optical properties was carried out for the synt... In this work, the Mg1-x Znx Fe2 O4 Nanoferrites (where x = 0.0, 0.2, 0.4, 0.6 and 0.8) was synthesized using co-precipitation method. The investigation of structural and optical properties was carried out for the synthesized samples using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible spectrophotometer (UV-Vis). XRD revealed that the structure of these nanoparticles is spinel with space group Fd3m and crystallite size lies in the range 21.0 - 42.8 nm. Lattice parameter was found to increases with Zn concentration and this may be due to the larger ionic radius of the Zn2+?ion. FTIR spectroscopy confirmed the formation of spinel ferrite and showed the characteristics absorption bands around 612, 1146, 1404, 1649 and 3245 cm-1. The energy band gap was calculated for samples with different ratio and was found to be 4.77, 4.82, 4.86, 4.87 and 4.95 eV. The substitution was resulted in slight increased in the lattice constant and that sequentially may lead to the slightly decreased in the energy gap. 展开更多
关键词 co-precipitation method Ferrite Nanoparticles SPINEL Structure XRD
下载PDF
Electron Transport Behavior of Multiferroic Perovskite BiMnO_3 Prepared by Co-Precipitation Method
12
作者 王红军 朱媛媛 周静 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期84-87,共4页
Perovskite BiMnO_3 samples are successfully synthesized by the co-precipitation method at relatively low pressure and moderate temperature.The temperature dependences of resistivity are measured and systematically inv... Perovskite BiMnO_3 samples are successfully synthesized by the co-precipitation method at relatively low pressure and moderate temperature.The temperature dependences of resistivity are measured and systematically investigated.It is shown that the electrical resistivity increases sharply with the decrease of temperature above 210 K and the fitted results demonstrate that the thermally activated conduction model is the dominant conduction mechanism for the electron transport behaviors in this temperature region.A dual conducting mechanism,i.e.,the variable range hopping and thermal activated conduction,is suggested to be responsible for the transport behaviors of BiMnO_3 in the region of 180-200 K.Moreover,the resistivity increases slightly with the decrease of temperature below 180 K and the transport is governed by the variable range hopping mechanism. 展开更多
关键词 BI Electron Transport Behavior of Multiferroic Perovskite BiMnO3 Prepared by co-precipitation method
下载PDF
Crystal Sizes and Energy Gaps of Cerium Oxide Using Co-Precipitation Method
13
作者 Paochi Chen 《Materials Sciences and Applications》 2022年第4期213-231,共19页
Co-precipitation was used to prepare cerium oxide nano-particles. The effects of aging temperature and concentration of cobalt ion on the optical property, morphology, and particle size were investigated. The cerium o... Co-precipitation was used to prepare cerium oxide nano-particles. The effects of aging temperature and concentration of cobalt ion on the optical property, morphology, and particle size were investigated. The cerium oxide was prepared by adding ammonia solution into a mixed solution of cerium nitrate with cobalt nitrate solutions to obtain a large amount of precipitates and then aged further. Subsequently, the precipitates were kept in an oven for calcination keeping the temperature at 400?C for lasting 24 h. The average size of cerium oxide particles was obtained from the (111) peak in the X-ray diffraction pattern using the Scherrer equation. The crystal sizes obtained were found to be in the range of 11.82 - 13.47 nm. The results showed that the particle size decreased with an increase in the Co ion concentration and decreased with an increase in temperature. The SEM pictures show that the morphology for cerium oxide is granular and/or columnar. It can be seen from UV/Vis absorption spectrum that the maximum absorption peaks were in the range of 334 - 390 nm, depending on the operating conditions. The corresponding energy gaps were observed in the range of 3.18 - 3.71 eV. Subsequently, the Brus equation for the energy gap was discussed. Finally, particle size was correlated with the aging temperature and Co ion concentration. 展开更多
关键词 co-precipitation Hydrothermal method Cerium Oxide Energy Gap
下载PDF
Effects of Heating Processing on Microstructure and Magnetic Properties of Mn-Zn Ferrites Prepared via Chemical Co-precipitation 被引量:2
14
作者 陈世杰 XIA Jingbing 代建清 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期684-688,共5页
The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM)... The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co- precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), frequency dependence of permeability and metallographical microscope were used to investigate the crystal structure, surface topography and magnetic properties of the powders and the sintering samples. The experimental results demonstrate that the precursor powders have formed a pure phase cubic spinel MnxZn1-xfe2O4 while in the reactor and show definite magnetism, which can solve the difficult issue in washing process effectively. When calcined beneath 450 ℃, the powders have intact crystal form and the crystallite size is less than 20 nm. Comparison tests of sintering temperatures show that 1 300 ℃ is the ideal sintering temperature for Mn-Zn ferrites prepared by using the chemical co-precipitation. 展开更多
关键词 Mn-Zn ferrites chemical co-precipitation method surface morphology MAGNETICPROPERTIES
下载PDF
Red Emitting Phosphor (Y,Gd)BO_3:Eu^(3+) for PDP Prepared by Complex Method 被引量:2
15
作者 崔向中 庄卫东 +5 位作者 张熙莹 夏天 龙震 鱼志坚 赵春雷 黄小卫 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期149-152,共4页
Red phosphor (Y, Gd)BO3:Eu3+ with grain shape, small size, non-agglomerate, high crystallinity and good photoluminescence (PL) intensity was prepared by a complex method that the precursor of the phosphor was prepared... Red phosphor (Y, Gd)BO3:Eu3+ with grain shape, small size, non-agglomerate, high crystallinity and good photoluminescence (PL) intensity was prepared by a complex method that the precursor of the phosphor was prepared by co-precipitation method and the phosphor was prepared by combustion method. The SEM photos and the photoluminescence spectrum excited under VUV show that the morphology and luminescent properties of this phosphor are satisfied when an appropriate amount of urea was adopted as the combustion agent in the preparation procedure. 展开更多
关键词 PDP red phosphor co-precipitation method combustion method PHOTOLUMINESCENCE rare earths
下载PDF
Synthesis and characterization of YAG:Ce^(3+) fluorescence powders by co-precipitation method 被引量:4
16
作者 胡玉才 吕忆民 +2 位作者 于学华 周丽 于军胜 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期303-307,共5页
YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as pr... YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C. 展开更多
关键词 YAG:Ce3+ powders co-precipitation method CHARACTERIZATION luminescence property rare earths
原文传递
Ultra-fine W-Y_(2)O_(3)composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering 被引量:5
17
作者 Weiqiang Hu Qingshuang Ma +3 位作者 Zongqing Ma Yuan Huang Zumin Wang Yongchang Liu 《Tungsten》 2019年第3期220-228,共9页
Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The b... Y_(2)O_(3)-doped tungsten(W-Y_(2)O_(3))composite powders prepared by a traditional chemical co-precipitation method possess obvious bimodal distribution in size,which would deteriorate their sintering properties.The bimodal distribution can be effectively eliminated by an improved chemical co-precipitation method,in which the cationic surfactant cetyltrimethyl-ammonium bromide(CTAB)was innovatively employed.The reduced powders with excellent uniformity have an average grain size of only~31.5 nm.It is noteworthy that Y_(2)O_(3)particles would fuse and grow with the growth of W grains during subsequent spark plasma sintering(SPS)process,which was rarely reported in relevant literature before.On top of that,phase interfaces of sintered W-Y_(2)O_(3)alloys were systematically analyzed.Compared to the intracrystalline oxygen content,the oxygen content at W/Y_(2)O_(3)phase boundaries is relatively higher.It can be found that the(110)crystal planes of W form coherent,semi-coherent,and non-coherent interfaces with different crystal planes of Y_(2)O_(3).The weak interfacial bonding strength between W and Y_(2)O_(3)phases results from relatively more oxygen impurities as well as more semi-coherent/non-coherent interfaces at phase boundaries compared with the inner W grains. 展开更多
关键词 Y_(2)O_(3)-doped tungsten Chemical co-precipitation method CTAB SPS Phase boundary
原文传递
Influence of ammonium sulfate on YAG nanopowders and Yb:YAG ceramics synthesized by a novel homogeneous co-precipitation method 被引量:1
18
作者 Jinsheng Li Zhifa Liu +3 位作者 Lei Wu Xiumei Han Xiwei Qi Xudong Sun 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第9期981-985,共5页
Homogeneous and dispersed Y3 Al5 O12(yttrium aluminum garnet,YAG) nanopowders were synthesized via a homogeneous co-precipitation method from the mixed solutions of yttrium nitrate,aluminum nitrate and a small amoun... Homogeneous and dispersed Y3 Al5 O12(yttrium aluminum garnet,YAG) nanopowders were synthesized via a homogeneous co-precipitation method from the mixed solutions of yttrium nitrate,aluminum nitrate and a small amount of ammonium sulfate using hot urea as the precipitant.The method has the superiorities that co-precipitation of cations is ensured and continuous decomposition of the hot urea is achieved to obtain the narrow size distribution particles.The addition of small amount of ammonium sulfate surfactant,although has no influence on YAG garnet phase formation,has significant effect on dispersion,particles distribution and sinterability of the resultant YAG and Yb:YAG powders.Compared with the undoped sample,the green body of Yb:YAG doped with ammonium sulfate has higher total shrinkage,linear shrinkage rate and relative density through sintering at 1600 ℃.The resultant Yb:YAG powders can be sintered into transparent ceramics at 1700 ℃ through vacuum sintering.The influence of the sulfate ions on characteristics of the resultant powders was thoroughly studied. 展开更多
关键词 Homogeneous co-precipitation method(NH4)2SO4 Homogeneous powders Yb:YAG Rare earths
原文传递
High CO methanation activity on zirconia-supported molybdenum sulfide catalyst 被引量:15
19
作者 Zhenhua Li Ye Tian +2 位作者 Jia He Baowei Wang Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期625-632,共8页
In this study, different methods were used to prepare MoO3/ZrO2 catalysts for sulfur resistant methanation reaction. It was found that MoO3/ZrO2 catalyst prepared by one-step co-precipitation method achieved high meth... In this study, different methods were used to prepare MoO3/ZrO2 catalysts for sulfur resistant methanation reaction. It was found that MoO3/ZrO2 catalyst prepared by one-step co-precipitation method achieved high methanation performance. CO conversion could reach up to 90% on 25 wt% MoO3/ZrO2 catalyst, much higher than that on the conventional 25 wt% MoO3/Al2O3 catalyst. The Mo-based catalysts were characterized by XRF, XRD, Raman, BET, TEM and H2-TPR etc. It was found that MoO3 particles were highly dispersed on ZrO2 support for 25 wt% MoO3/ZrO2 catalyst prepared at 65-85℃ because of its relatively larger pore size, which contributed to a high CO conversion. Meanwhile, when MoO3 loading exceeded the monolayer coverage, the formed crystalline MoO3 and ZrM020g might block the micropores of the catalyst and make the methanation activity declined. These results are useful for preparing highly efficient catalyst for CO methanation process. 展开更多
关键词 MoO3/ZrO2 catalyst one-step co-precipitation method sulfur resistant methanation high CO conversion
下载PDF
Preparation of silver tin oxide powders by hydrothermal reduction and crystallization 被引量:4
20
作者 DU Zuojuan YANG Tianzu +2 位作者 GU Yingying QIU Xiaoyong DOU Aichun 《Rare Metals》 SCIE EI CAS CSCD 2007年第5期470-475,共6页
Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions.... Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions. The co-precipitation conditions were investigated. The results show that the co-precipitate of Ag2C2O4 and Sn(OH)4 is available when the pH value of the solution is 4.27-8.36. Using the obtained precipitate as precursor,the reduction of Ag+ and the crystallization of tin oxide were carried out simultaneously by the hydrothermal method and silver tin oxide composite powders were obtained. The composite powders were characterized by X-ray diffraction (XRD) analysis,scanning electron microscope (SEM),and energy spectrum analysis. The results show that the silver tin oxide composite powders are small with a diameter of about 2 μm and with homogeneous distribution of tin. 展开更多
关键词 composite material silver tin oxide hydrothermal method co-precipitation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部