In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investig...In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.展开更多
High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium...High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed.展开更多
Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructur...Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.展开更多
Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.Th...Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and flow stress behavior of the billets.The billets with the specific casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.展开更多
Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show...Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show that the microstructures of the alloy cast under high-intensity ultrasonic field are fine and uniform,and the grains are equiaxed,rose-shaped or globular with an average size of 257μm.High-intensity field significantly decreases the grain size,changes the morphologies of theβ-Mg17Al12 phases and reduces their area fraction.It is also shown that a proper increase in ultrasonic intensity is helpful to obtain fine,uniform and equiaxed as-cast microstructures.The optimum ultrasonic parameters are that frequency is 20 kHz and ultrasonic intensity is 1 368 W.The mechanical tests show that the mechanical properties of the as-cast AZ80 magnesium alloy billets cast under ultrasonic field are greatly improved,and with increasing the ultrasonic intensity,the mechanical properties of the entire alloy billets are much higher and more uniform than those of the alloy without ultrasonic field.展开更多
The microstucture, mechanical properties and fracture behaviors of semi-continuous cast Mg-8Gd- 3Y-0.5Zr (wt.%, GW83K) alloy after different heat treatments were investigated. Almost all the eutectic compounds were ...The microstucture, mechanical properties and fracture behaviors of semi-continuous cast Mg-8Gd- 3Y-0.5Zr (wt.%, GW83K) alloy after different heat treatments were investigated. Almost all the eutectic compounds were dissolved into the matrix and there was no evident grain growth after optimum solution treatment at 500 ~C for 4 h. Further ageing at low temperatures led to significant precipitation hardening, which strengthened the alloy. Peak-aged at 200℃, the alloy had the highest ultimate tensile strength (UTS) and lowest elongation at 395 MPa and 2.8%, respectively. When aged at 225℃ for 15 h, the alloy exhibited prominent mechanical performance with UTS and elongation of 363 MPa and 5.8 %, respectively. With regard to microstructure and tensile properties, the processes of 500℃, 4 h + 225℃, 15 h are selected as the optimal heat treatment conditions. The alloy under different conditions shows different fracture behaviors: in the as-cast alloy, a quasi-cleavage pattern is observed; after solution treatment, the alloy exhibits a trans-granular quasi-cleavage fracture; after being peak-aged at 200℃ and 225℃, the fracture mode is a mixed mode of trans-granular and inter-granular fracture, in which the inter-granular mode is dominant in the alloy peak-aged at 200℃.展开更多
After the investigation on partial remelting of thixotropic magnesium serial alloys (ZK60) by near non-equilibrium liquidus casting (NNLC), the primary solid grains of ZK60-2Ca alloy spheroidized notably during pa...After the investigation on partial remelting of thixotropic magnesium serial alloys (ZK60) by near non-equilibrium liquidus casting (NNLC), the primary solid grains of ZK60-2Ca alloy spheroidized notably during partial remelting processing, however, coarsening and polygonization as occurred holding time prolonged. The refining and globularity of the thixotropic alloys are promoted after further alloyed by Y, RE, Nd and/or Ag, and the results vary with those addition. The remelting structure of ZK60-2Ca-1Y alloy is finer than its base alloy. And the effect of RE, especially Ag, on the refinement of microstrueture is notable, but Nd does nothing on it. There is little impact of remelting temperature fluctuation on partial remelted microstrueture as holding time in general. On the contrary, it is more sensitive at longer holding time. The quality thixotropic silver-contained alloy can be achieved by remelted partially at 600℃ for 10 min.展开更多
The microstructures of ZL201 alloy slurry prepared by near-liquidus electromagnetic casting (NLEMC), electromagnetic casting(EMC), and near-liquidus casting(NLC) were investigated by means of electron microscopy...The microstructures of ZL201 alloy slurry prepared by near-liquidus electromagnetic casting (NLEMC), electromagnetic casting(EMC), and near-liquidus casting(NLC) were investigated by means of electron microscopy and image analysis. Mechanical properties of as-cast alloys were determined. The results show that the NLEMC induces a fine, uniform, and equiaxed grain structure with a mean equal-area-circle grain diameter of 32.8μm. The as-cast aUoy has a hardness of HV122.8 and a tensite strength of 368MPa. Both of them are betterthan those of the alloys prepared by EMC and by NLC. The mechanism of grain refinement in the NLEMC alloy slurry was discussed.展开更多
Semi-solid ingots of an A1SiTMg alloy were obtained using the method of near liquidus casting. Their microstructures exhibit the characteristics of free, equiaxed, and non-dendrite, which are required for semi-solid f...Semi-solid ingots of an A1SiTMg alloy were obtained using the method of near liquidus casting. Their microstructures exhibit the characteristics of free, equiaxed, and non-dendrite, which are required for semi-solid forming. The influences of casting temperature, heat preservation time, and cooling rate on the microstructure were also investigated. The results show that in the temperature region near liquidus the grain size becomes small with a decrease in casting temperature. Prolonging the heat preservation time makes grain crassitude at the same temperature. And increasing the cooling rate makes grain fine. The microstructure of the alloy cast with iron mould is freer than that with graphite mould.展开更多
The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that...The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.展开更多
The semi-continuous casting of ZK60 magnesium alloy under different middle frequency electromagnetic field conditions was examined.Effects of middle frequency electromagnetic field on microstructure,precipitations and...The semi-continuous casting of ZK60 magnesium alloy under different middle frequency electromagnetic field conditions was examined.Effects of middle frequency electromagnetic field on microstructure,precipitations and tensile properties are investigated.The results show that the microstructures of ZK60 magnesium alloy are refined and distribution uniformity of precipitations is observed after applying the middle frequency electromagnetic field.And the tensile properties of the billets produced by middle frequency electromagnetic field are increased.展开更多
Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity,...Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity, however low rate of solidification is aimed in order to get coarser grain size and softer metal for less losses in extrusion. A three-dimensional numerical model has been developed including solidification behavior of copper through mushy zone. At steady state and constant casting speed, solid shell thickness is monitored during the reduction of cooling rate at mould region to avoid breaking out. Heat flux intensity at mould plays important role not only in the formation of solid shell thickness. But, pool length and mushy zone thickness can be significantly increased by decreasing primary cooling intensity. Increase intensity of secondary cooling zone for two particular cases of primary cooling is tested. First case is tested at mould inlet water temperature of 38°C, and second case at water temperature of 63°C. Results showed that the combination of increasing secondary cooling intensity and reduction of primary cooling intensity can increase pool length and mushy zone thickness. Also, it is shown that, secondary cooling intensity can be magnified by up to 1.5 times for cooling water temperature of 63°C to get pool length close to that of water temperature of 38°C.展开更多
Fine, equiaxed, non dendritic structure needed by semi solid processing was obtained by liquidus cast, i.e. 7075 wrought aluminum alloy cast from liquidus temperature. The microstructures after heat treatment at diffe...Fine, equiaxed, non dendritic structure needed by semi solid processing was obtained by liquidus cast, i.e. 7075 wrought aluminum alloy cast from liquidus temperature. The microstructures after heat treatment at different temperatures and time in the semi solid range were observed, and the compression deformation behavior at different temperatures (490~600 ℃) and strain rates (5×10 -3 ~5s -1 ) was investigated by means of Gleeble 1500 thermal mechanical simulator. The results show that the deformation resistance of the non dendritic structure attained by liquidus cast in semi solid is remarkably lower than that of conventional dendritic structure. The formability of non dendritic structure is better than that of dendritic structure.展开更多
Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and th...Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and the distribution of Ce was analyzed by optical microscopy (OM), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that Ce element exists in the form of Mg12Ce phase and has an obvious refining effect on the microstructure of test alloys. As the Ce content increases, the grain size reduces, the grain boundaries turn thinner, and the distribution of Mg12Ce precipitates becomes more and more dispersed. The Mg-1.5Zn-0.2Zr alloy with 0.3%Ce has the best refinement effect. From center to periphery of the ingot, the amount of granular precipitates in the grain reduces. In longitudinal section of the ingot, some relative long columnar grains appear.展开更多
For the large magnesium alloy ingot, there is a considerable difference in cooling rate of different parts in the ingot, which leads to non-uniform distribution of the secondary phases, solute segregation and tensile ...For the large magnesium alloy ingot, there is a considerable difference in cooling rate of different parts in the ingot, which leads to non-uniform distribution of the secondary phases, solute segregation and tensile properties. In the present research, an heavy AZ61 alloy ingot with a diameter of 500 mm was made by semi-continuous casting. The microstructure and mechanical properties at different positions along the radial direction of the large ingot were investigated by using an optical microscope(OM), a scanning electron microscope(SEM), an energy dispersive spectroscope(EDS), and a micro-hardness tester. The results indicate that the microstructure of the AZ61 ingot is non-uniform in different locations. It changes from equiaxed to columnar grains from the center to the edge; the average grain size gradually reduces from 1,005 μm to 763 μm, the secondary dendrite arm spacing reduces from 78 μm to 50 μm, and the Mg17(Al,Zn)12 phase is also refined. The micro-hardness value increases from 55.4 HV at the center to 72.5 HV at the edge of the ingot due to the microstructure differences, and the distribution of micro-hardness at the edge of the ingot is more uniform than that in the center. The tensile properties at room temperature show little difference from the center to the edge of the ingot except that the elongation at the edge is only 3.5%, much lower than that at other areas. The fracture mechanism is ductile fracture at the center and cleavage fracture at the edge of the ingot, and at the 1/2 radius of the ingot, a mixture of ductile and cleavage fracture is present.展开更多
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting...With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.展开更多
We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency...We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt menis-cus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromag-netic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.展开更多
Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different l...Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different locations of the samples with as-cast,T4 and T6 heat-treated states,respectively,were investigated.No obvious macro segregation has been detected in the high-quality alloy ingot.The main eutectic structures at all different locations are composed ofα-Mg,Mg3RE-type,Mg5RE-type and LPSO phases.At the edge of ingot,the unusual casting twins including 10-12 extension twins and 10-11 compression twins were observed due to the intensive internal stress.In T4 heat-treated alloy,the micro segregation was eliminated.The remained phases wereα-Mg and LPSO phase.Combined with the remarkable age-hardening response,T6 samples exhibits improved mechanical properties at ambient temperature,which derives from the dense prismaticβ'precipitates and profuse basalγ'precipitates.展开更多
An investigation was made on the possibility of using Ni-x phase diagrams to judge the sym- bol and degree of segregation of alloying element x in cast nickel-base superalloys.The pre- diction coincides with the exper...An investigation was made on the possibility of using Ni-x phase diagrams to judge the sym- bol and degree of segregation of alloying element x in cast nickel-base superalloys.The pre- diction coincides with the experimental data.展开更多
基金The National Natural Science Foundation of China (Grants No. 59974009) is greatly acknowledged for their financial support.
文摘In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.
基金supported by the National Natural Science Foundation of China(No.52274377 and No.52304391)the Natural Science Foundation of Liaoning Province(No.2023-MSBA-133)the Fundamental Research Funds for the Central Universities(No.N2402010).
文摘High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed.
基金Project (2005CB623707) supported by the National Basic Research Program of China
文摘Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.
基金This research was financially supported by National Basic Research Program of China(Grant No.2013CB632203)the Liaoning Provincial Natural Science Foundation of China(Grant No.201202072)+1 种基金National Key Technology R&D Program of China(2012BAF09B01)the Fundamental Research Foundation of Central Universities(Grant Nos.N120509002 and N120309003).
文摘Mg-9Gd-3Y-1.5Zn-0.8Zr alloys own high strength,good heat and corrosion resistance.However,it is difficult for the fabrication of large-scale billets,due to the poor deformation ability and strong hot-crack tendency.This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg-9Gd-3Y-1.5Zn-0.8Zr billets.The casting process(electromagnetic intensity and casting speed)shows outstanding effects on the microstructures and flow stress behavior of the billets.The billets with the specific casting process(I=68 A,V=65 mm/min)exhibit uniform microstructures and good deformation uniformity.
基金Projects(2007CB613701,2007CB613702)supported by the National Basic Research Program of ChinaProjects(50974037,50904018)supported by the National Natural Science Foundation of China+1 种基金Project(NCET-08-0098)supported by New Century Excellent Talents in University of ChinaProjects(N09040902,N090209002)supported by the Special Foundation for Basic Scientific Research of Central Colleges
文摘Under the high-intensity ultrasonic field,AZ80 magnesium alloy was semi-continuously cast.The effects of ultrasonic intensity on the as-cast microstructures and mechanical properties were investigated.The results show that the microstructures of the alloy cast under high-intensity ultrasonic field are fine and uniform,and the grains are equiaxed,rose-shaped or globular with an average size of 257μm.High-intensity field significantly decreases the grain size,changes the morphologies of theβ-Mg17Al12 phases and reduces their area fraction.It is also shown that a proper increase in ultrasonic intensity is helpful to obtain fine,uniform and equiaxed as-cast microstructures.The optimum ultrasonic parameters are that frequency is 20 kHz and ultrasonic intensity is 1 368 W.The mechanical tests show that the mechanical properties of the as-cast AZ80 magnesium alloy billets cast under ultrasonic field are greatly improved,and with increasing the ultrasonic intensity,the mechanical properties of the entire alloy billets are much higher and more uniform than those of the alloy without ultrasonic field.
基金financially supported by the National Natural Science Foundation of China(51074106)the National Key Technology R&D Program of China(2011BAE22B01-5)
文摘The microstucture, mechanical properties and fracture behaviors of semi-continuous cast Mg-8Gd- 3Y-0.5Zr (wt.%, GW83K) alloy after different heat treatments were investigated. Almost all the eutectic compounds were dissolved into the matrix and there was no evident grain growth after optimum solution treatment at 500 ~C for 4 h. Further ageing at low temperatures led to significant precipitation hardening, which strengthened the alloy. Peak-aged at 200℃, the alloy had the highest ultimate tensile strength (UTS) and lowest elongation at 395 MPa and 2.8%, respectively. When aged at 225℃ for 15 h, the alloy exhibited prominent mechanical performance with UTS and elongation of 363 MPa and 5.8 %, respectively. With regard to microstructure and tensile properties, the processes of 500℃, 4 h + 225℃, 15 h are selected as the optimal heat treatment conditions. The alloy under different conditions shows different fracture behaviors: in the as-cast alloy, a quasi-cleavage pattern is observed; after solution treatment, the alloy exhibits a trans-granular quasi-cleavage fracture; after being peak-aged at 200℃ and 225℃, the fracture mode is a mixed mode of trans-granular and inter-granular fracture, in which the inter-granular mode is dominant in the alloy peak-aged at 200℃.
文摘After the investigation on partial remelting of thixotropic magnesium serial alloys (ZK60) by near non-equilibrium liquidus casting (NNLC), the primary solid grains of ZK60-2Ca alloy spheroidized notably during partial remelting processing, however, coarsening and polygonization as occurred holding time prolonged. The refining and globularity of the thixotropic alloys are promoted after further alloyed by Y, RE, Nd and/or Ag, and the results vary with those addition. The remelting structure of ZK60-2Ca-1Y alloy is finer than its base alloy. And the effect of RE, especially Ag, on the refinement of microstrueture is notable, but Nd does nothing on it. There is little impact of remelting temperature fluctuation on partial remelted microstrueture as holding time in general. On the contrary, it is more sensitive at longer holding time. The quality thixotropic silver-contained alloy can be achieved by remelted partially at 600℃ for 10 min.
基金This work was supported by the National Natural Science Foundation of China(No.50374031)National High Technical Reasearch and Development Programme of China(No.2003AA305090)Liaoning Provincial Natural Science Foundation of China(No.20031011).
文摘The microstructures of ZL201 alloy slurry prepared by near-liquidus electromagnetic casting (NLEMC), electromagnetic casting(EMC), and near-liquidus casting(NLC) were investigated by means of electron microscopy and image analysis. Mechanical properties of as-cast alloys were determined. The results show that the NLEMC induces a fine, uniform, and equiaxed grain structure with a mean equal-area-circle grain diameter of 32.8μm. The as-cast aUoy has a hardness of HV122.8 and a tensite strength of 368MPa. Both of them are betterthan those of the alloys prepared by EMC and by NLC. The mechanism of grain refinement in the NLEMC alloy slurry was discussed.
基金the National Natural Science Foundation of China (No. 50374031)the Aviation Science Foundation of Liaoning Province (No. 20054003)+1 种基金the Education Committee of Liaoning Province (No. 05L415)the Research Foundation of the Experimental Center of SYNU.]
文摘Semi-solid ingots of an A1SiTMg alloy were obtained using the method of near liquidus casting. Their microstructures exhibit the characteristics of free, equiaxed, and non-dendrite, which are required for semi-solid forming. The influences of casting temperature, heat preservation time, and cooling rate on the microstructure were also investigated. The results show that in the temperature region near liquidus the grain size becomes small with a decrease in casting temperature. Prolonging the heat preservation time makes grain crassitude at the same temperature. And increasing the cooling rate makes grain fine. The microstructure of the alloy cast with iron mould is freer than that with graphite mould.
基金Project(2010A090200078)supported by the Special Foundation Project of Industry,University and Research Institute Collaboration of Guangdong Provincial Government and the Ministry of Education,ChinaProject(2010B090500010)supported by the Special Commissioners’ Workstation Construction Project of Guangdong Provincial Government,China
文摘The AZ31 alloy ingot with diameter of 110 mm and length of 3500 mm was fabricated successfully. The compositions and microstructure morphologies of the ingot at different locations were performed, which indicated that the chemical composition distributed homogeneously through the whole alloy ingot and the average grain size increased from the surface to the center. The results of the EDS and element face-scanning illustrated that the eutectic compounds mainly consisted of fl-Mg17Al12 and a small amount of fl-Mgl7(AlZn)12. Furthermore, slight improvements of the strength and ductility were observed from the center to the surface along the axial direction of the alloy ingot, while both the strength and elongation to failure of the samples along the radial direction are higher than that along the axial direction. The fine grain strengthening was the main contributors to the strength of the as-casted AZ31 alloy.
基金Funded by the National Natural Science Foundation of China (NSFC)(No.50475157)the Key Fund of NSFC (No.50234022)the Key Project of Ministry of Education of China (No.105052)
文摘The semi-continuous casting of ZK60 magnesium alloy under different middle frequency electromagnetic field conditions was examined.Effects of middle frequency electromagnetic field on microstructure,precipitations and tensile properties are investigated.The results show that the microstructures of ZK60 magnesium alloy are refined and distribution uniformity of precipitations is observed after applying the middle frequency electromagnetic field.And the tensile properties of the billets produced by middle frequency electromagnetic field are increased.
文摘Cooling heat flux effect in both primary and secondary cooling zone has been studied in semi-continuous casting of copper billet. Sufficient cooling is essential to reduce casting defects and to get high productivity, however low rate of solidification is aimed in order to get coarser grain size and softer metal for less losses in extrusion. A three-dimensional numerical model has been developed including solidification behavior of copper through mushy zone. At steady state and constant casting speed, solid shell thickness is monitored during the reduction of cooling rate at mould region to avoid breaking out. Heat flux intensity at mould plays important role not only in the formation of solid shell thickness. But, pool length and mushy zone thickness can be significantly increased by decreasing primary cooling intensity. Increase intensity of secondary cooling zone for two particular cases of primary cooling is tested. First case is tested at mould inlet water temperature of 38°C, and second case at water temperature of 63°C. Results showed that the combination of increasing secondary cooling intensity and reduction of primary cooling intensity can increase pool length and mushy zone thickness. Also, it is shown that, secondary cooling intensity can be magnified by up to 1.5 times for cooling water temperature of 63°C to get pool length close to that of water temperature of 38°C.
文摘Fine, equiaxed, non dendritic structure needed by semi solid processing was obtained by liquidus cast, i.e. 7075 wrought aluminum alloy cast from liquidus temperature. The microstructures after heat treatment at different temperatures and time in the semi solid range were observed, and the compression deformation behavior at different temperatures (490~600 ℃) and strain rates (5×10 -3 ~5s -1 ) was investigated by means of Gleeble 1500 thermal mechanical simulator. The results show that the deformation resistance of the non dendritic structure attained by liquidus cast in semi solid is remarkably lower than that of conventional dendritic structure. The formability of non dendritic structure is better than that of dendritic structure.
基金Project(2007CB613702) supported by the National Basic Research Program of ChinaProject(CSTD2006AA4012) supported by the Key Technologies R&D Program of the Chongqing Science and Technology Commission
文摘Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and the distribution of Ce was analyzed by optical microscopy (OM), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that Ce element exists in the form of Mg12Ce phase and has an obvious refining effect on the microstructure of test alloys. As the Ce content increases, the grain size reduces, the grain boundaries turn thinner, and the distribution of Mg12Ce precipitates becomes more and more dispersed. The Mg-1.5Zn-0.2Zr alloy with 0.3%Ce has the best refinement effect. From center to periphery of the ingot, the amount of granular precipitates in the grain reduces. In longitudinal section of the ingot, some relative long columnar grains appear.
基金financially supported by the National Key Technology R&D Program(No.2012BAF09B04)International Technical Cooperation Project(No.2011DFR50950)of the Ministry of Science and Technology of Chinathe Chongqing Science and Technology Commission(No.CSTC2013JCYJC60001)
文摘For the large magnesium alloy ingot, there is a considerable difference in cooling rate of different parts in the ingot, which leads to non-uniform distribution of the secondary phases, solute segregation and tensile properties. In the present research, an heavy AZ61 alloy ingot with a diameter of 500 mm was made by semi-continuous casting. The microstructure and mechanical properties at different positions along the radial direction of the large ingot were investigated by using an optical microscope(OM), a scanning electron microscope(SEM), an energy dispersive spectroscope(EDS), and a micro-hardness tester. The results indicate that the microstructure of the AZ61 ingot is non-uniform in different locations. It changes from equiaxed to columnar grains from the center to the edge; the average grain size gradually reduces from 1,005 μm to 763 μm, the secondary dendrite arm spacing reduces from 78 μm to 50 μm, and the Mg17(Al,Zn)12 phase is also refined. The micro-hardness value increases from 55.4 HV at the center to 72.5 HV at the edge of the ingot due to the microstructure differences, and the distribution of micro-hardness at the edge of the ingot is more uniform than that in the center. The tensile properties at room temperature show little difference from the center to the edge of the ingot except that the elongation at the edge is only 3.5%, much lower than that at other areas. The fracture mechanism is ductile fracture at the center and cleavage fracture at the edge of the ingot, and at the 1/2 radius of the ingot, a mixture of ductile and cleavage fracture is present.
基金Project(2010CB731700) supported by the National Basic Research Program of China
文摘With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.
基金financially supported by the National Natural Science Foundation of China(No.51004036)the Fundamental Research Funds for the Central Universities(No.N120309002)
文摘We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt menis-cus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromag-netic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301100)the Natural Science Foundation Commission of China(Nos.51571044 and 51874062)+2 种基金the Chongqing foundation and advanced research project(No.cstc2019jcyjzdxmX0010)the Fundamental Research Funds for the Central Universities(Nos.2018CDGFCL0005 and 2019CDXYCL0031)the financial support from the China Scholarship Council(No.201906050113)。
文摘Large-scale Mg-8Gd-4Y-1Zn-Mn(wt.%)alloy ingot with a diameter of 315 mm and a length of 2410 mm was prepared through semi-continuous casting.Chemical composition,microstructure and mechanical properties at different locations of the samples with as-cast,T4 and T6 heat-treated states,respectively,were investigated.No obvious macro segregation has been detected in the high-quality alloy ingot.The main eutectic structures at all different locations are composed ofα-Mg,Mg3RE-type,Mg5RE-type and LPSO phases.At the edge of ingot,the unusual casting twins including 10-12 extension twins and 10-11 compression twins were observed due to the intensive internal stress.In T4 heat-treated alloy,the micro segregation was eliminated.The remained phases wereα-Mg and LPSO phase.Combined with the remarkable age-hardening response,T6 samples exhibits improved mechanical properties at ambient temperature,which derives from the dense prismaticβ'precipitates and profuse basalγ'precipitates.
文摘An investigation was made on the possibility of using Ni-x phase diagrams to judge the sym- bol and degree of segregation of alloying element x in cast nickel-base superalloys.The pre- diction coincides with the experimental data.