NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and t...NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.展开更多
Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-pr...Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.展开更多
An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample ...An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.展开更多
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva...Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.展开更多
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were inve...Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.展开更多
3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like precursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 h...3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like precursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 have been characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray powder diffraction. The as-synthesized Co3O4 products are of urchin-like structures with approximated 5-7 μm in diameter, and are composed of numerous nanoparticles chains with the particles diameter of about 15 nm. This kind of urchin-like Co3O4 exhibits superior energy storage properties with the high capacity of 1.369 Ah/g and its good cyclic stability shows great potential in the rechargeable Li-ion battery.展开更多
In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingth...In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingthe synthesistemperaturein the solution.The as-prepared NAM materials were investigated by FT-IR, XRD, SEM and EIS. Their discharge-charge and cycle performance were also tested. The resultsshowthat the particle size decreasesto less than10μm at the temperature ofhigher than 40℃.When synthesized at 80℃,the NAMwiththe smallest particle size (-3μm)exhibitsthe best electrochemical performance such ashigh initial discharge capacity of 409 mA·h/gandcoulombic efficiency of 95% in the first cycle at 0.04C.展开更多
We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dis...We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.展开更多
The requirement of energy-storage equipment needs to develop the lithium ion battery(LIB) with high electrochemical performance. The surface modification of commercial LiFePO_4(LFP) by utilizing zeolitic imidazolate f...The requirement of energy-storage equipment needs to develop the lithium ion battery(LIB) with high electrochemical performance. The surface modification of commercial LiFePO_4(LFP) by utilizing zeolitic imidazolate frameworks-8(ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances.In this work, the carbonized ZIF-8(C_(ZIF-8)) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/C_(ZIF-8) sample. The N_2 adsorption and desorptionisotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/C_(ZIF-8) cathode-active material delivers a discharge specific capacity of 159.3 m Ah g^(-1) at 0.1 C and a discharge specific energy of 141.7 m Wh g^(-1) after 200 cycles at 5.0 C(the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity,the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/C_(ZIF-8) cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.展开更多
With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretic...With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid tothe transition metal sulfides. Recently, a large amount of research papers have reported about the appli-cation of transition metal sulfides in lithium ion batteries. However, the practical application of transitionmetal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focusedresearches should be operated towards the commercialization of transition metal sulfides in lithium ionbatteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteriesis presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transitionmetal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a fur-ther understanding of the associated electrochemical processes are also discussed.展开更多
The polyoxovanadate(NH4)7[MnV13O38](AMV) was synthesized and characterized by X-ray diffraction pattern, Fourier transform infrared spectra, and field emission scanning electron microscope equipped with energy dis...The polyoxovanadate(NH4)7[MnV13O38](AMV) was synthesized and characterized by X-ray diffraction pattern, Fourier transform infrared spectra, and field emission scanning electron microscope equipped with energy dispersive X-ray spectroscopy. In order to improve the electrochemical performance of AMV, the particle size of as-prepared AMV is decreased to nanoscale by re-precipitation in the water-ethanol solution. The results of the electrochemical impedance spectra and the 4-pin probe measurements show that the electrical conductivity of AMV is improved by decreasing the particle size. The nanoparticle AMV shows higher initial discharge capacity and energy density than the as-prepared AMV when cycled at 0.5C. On the other hand, the nanoparticle AMV exhibits higher rate capability than the as-prepared AMV.展开更多
The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium...The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium ion capacitors(LICs).Here,an orientateddesigned pore size distribution(range from 0.5 to 200 nm)and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed,which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode.Significantly,after the systematical analysis cooperating with experimental result and density functional theory calculation,it is uncovered that the size of solvated PF6-ion is about 1.5 nm.Moreover,the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5-3 nm.Triggered with synergistic effect of graphitization and appropriate pore size distribution,optimized carbon cathode(Zn90Co10-APC)displays excellent capacitive performances with a reversible specific capacity of^50 mAh g-1at a current density of 5 A g-1.Furthermore,the assembly pre-lithiated graphite(PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg-1 and a high power density of 150,000 W kg-1 as well as excellent long-term ability with 10,000 cycles.This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF<sub>6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems.展开更多
Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by en...Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by environment-friendly,low energy consumption and high efficiency.This review summarizes the research progress in ELIP,and focuses on the evaluation methods,electrode materials and electrochemical systems of ELIP.It can be concluded that ELIP is expected to achieve an industrial application and has a promising prospect.In addition,challenges and perspective of electrochemical lithium extraction are also highlighted.展开更多
Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and ...Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries.展开更多
A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of ...A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1.展开更多
Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are stil...Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are still limited its practice applications. To achieve high performance LIB, the surface-confined strategy has been applied to design and fabricate a new anode material of NiCo-LDH nanosheet anchored on the surface of Ti3C2 MXene(Ni Co-LDH/Ti3C2). The ultra-thin, bended and wrinkled α-phase crystal with an interlayer spacing of 8.1 ? can arrange on the conductive substrates Ti3C2 MXene directly, resulting in high electrolyte diffusion ability and low internal resistance. Furthermore, chemical bond interactions between the highly conductive Ti3C2 MXene and Ni Co-LDH nanosheets can greatly increase the ion and electron transport and reduce the volume expansion of NiCo-LDH during Li ion intercalation. As expected,the discharge capacity of 562 m Ah g-1 at 5.0 A g-1 for 800 cycles without degradation can be achieved,rate capability and cycle performance are better than that of NiCo-LDH(~100 mAh g-1). Furthermore, the density function theory(DFT) calculations were performed to demonstrate that Ni Co-LDH/Ti3C2 system can be used as a highly desirable and promising anode material for lithium ion battery.展开更多
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural c...Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery.展开更多
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/ino...Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.展开更多
The physical fundamentals and influences upon electrode materials' open-circuit voltage (OCV) and the spatial distribution of electrochemical potential in the full cell are briefly reviewed. We hope to illustrate t...The physical fundamentals and influences upon electrode materials' open-circuit voltage (OCV) and the spatial distribution of electrochemical potential in the full cell are briefly reviewed. We hope to illustrate that a better understanding of these scientific problems can help to develop and design high voltage cathodes and interfaces with low Ohmic drop. OCV is one of the main indices to evaluate the performance of lithium ion batteries (LIBs), and the enhancement of OCV shows promise as a way to increase the energy density. Besides, the severe potential drop at the interfaces indicates high resistance there, which is one of the key factors limiting power density.展开更多
基金Project(JS-211)supported by the State-Owned Enterprise Electric Vehicle Industry Alliance,China
文摘NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.
基金Project (20110490594) supported by China Postdoctoral Science Foundation
文摘Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.
基金Projects (51204209,51274240) supported by the National Natural Science Foundation of China
文摘An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.
基金Project (20771100) supported by the National Natural Science Foundation of China
文摘Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
基金Project(2011FJ1005)supported by the Science and Technology Programs of Hunan Province,China
文摘Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.
基金This work was supported by the National Natural Science Foundation of China (No.11074254), the Ministry of Science and Technology of China (No.2005CB623603), the Hundred Talent Program of Chinese Academy of Sciences, and the President Foundation of Hefei Institute of Physical Sciences.
文摘3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like precursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 have been characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, and X-ray powder diffraction. The as-synthesized Co3O4 products are of urchin-like structures with approximated 5-7 μm in diameter, and are composed of numerous nanoparticles chains with the particles diameter of about 15 nm. This kind of urchin-like Co3O4 exhibits superior energy storage properties with the high capacity of 1.369 Ah/g and its good cyclic stability shows great potential in the rechargeable Li-ion battery.
文摘In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingthe synthesistemperaturein the solution.The as-prepared NAM materials were investigated by FT-IR, XRD, SEM and EIS. Their discharge-charge and cycle performance were also tested. The resultsshowthat the particle size decreasesto less than10μm at the temperature ofhigher than 40℃.When synthesized at 80℃,the NAMwiththe smallest particle size (-3μm)exhibitsthe best electrochemical performance such ashigh initial discharge capacity of 409 mA·h/gandcoulombic efficiency of 95% in the first cycle at 0.04C.
基金This work was supported by the National Natural Science Foundation of China (No.21373197), the 100 Talents Program of the Chinese Academy of Sciences, USTC Startup and the Fundamental Research Funds for the Central Universities (WK2060140018).
文摘We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.
基金supported by the Scientific and Technological Development Project of the Beijing Education Committee(No.KZ201710005009)
文摘The requirement of energy-storage equipment needs to develop the lithium ion battery(LIB) with high electrochemical performance. The surface modification of commercial LiFePO_4(LFP) by utilizing zeolitic imidazolate frameworks-8(ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances.In this work, the carbonized ZIF-8(C_(ZIF-8)) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/C_(ZIF-8) sample. The N_2 adsorption and desorptionisotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/C_(ZIF-8) cathode-active material delivers a discharge specific capacity of 159.3 m Ah g^(-1) at 0.1 C and a discharge specific energy of 141.7 m Wh g^(-1) after 200 cycles at 5.0 C(the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity,the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/C_(ZIF-8) cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.
基金the financial support of the National Natural Science Foundation of China (21273185 and 21621091)the National Found for Fostering Talents of Basic Science (J1310024)
文摘With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid tothe transition metal sulfides. Recently, a large amount of research papers have reported about the appli-cation of transition metal sulfides in lithium ion batteries. However, the practical application of transitionmetal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focusedresearches should be operated towards the commercialization of transition metal sulfides in lithium ionbatteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteriesis presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transitionmetal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a fur-ther understanding of the associated electrochemical processes are also discussed.
文摘The polyoxovanadate(NH4)7[MnV13O38](AMV) was synthesized and characterized by X-ray diffraction pattern, Fourier transform infrared spectra, and field emission scanning electron microscope equipped with energy dispersive X-ray spectroscopy. In order to improve the electrochemical performance of AMV, the particle size of as-prepared AMV is decreased to nanoscale by re-precipitation in the water-ethanol solution. The results of the electrochemical impedance spectra and the 4-pin probe measurements show that the electrical conductivity of AMV is improved by decreasing the particle size. The nanoparticle AMV shows higher initial discharge capacity and energy density than the as-prepared AMV when cycled at 0.5C. On the other hand, the nanoparticle AMV exhibits higher rate capability than the as-prepared AMV.
基金financially supported by National Key Research and Development Program of China(2018YFC1901605)the National Postdoctoral Program for Innovative Talents(BX201600192)+1 种基金Hunan Provincial Science and Technology Plan(2017TP1001)Innovation Mover Program of Central South University(GCX20190893Y)。
文摘The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium ion capacitors(LICs).Here,an orientateddesigned pore size distribution(range from 0.5 to 200 nm)and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed,which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode.Significantly,after the systematical analysis cooperating with experimental result and density functional theory calculation,it is uncovered that the size of solvated PF6-ion is about 1.5 nm.Moreover,the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5-3 nm.Triggered with synergistic effect of graphitization and appropriate pore size distribution,optimized carbon cathode(Zn90Co10-APC)displays excellent capacitive performances with a reversible specific capacity of^50 mAh g-1at a current density of 5 A g-1.Furthermore,the assembly pre-lithiated graphite(PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg-1 and a high power density of 150,000 W kg-1 as well as excellent long-term ability with 10,000 cycles.This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF<sub>6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems.
基金supported by the National Natural Science Foundation of China(grant numbers 21878133,21908082 and 21722604)the Natural Science Foundation of Jiangsu Province(BK20190854)+2 种基金the China Postdoctoral Science Foundation(2020M671364)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX191622)the Science&Technology Foundation of Zhenjiang(GY2020027)。
文摘Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by environment-friendly,low energy consumption and high efficiency.This review summarizes the research progress in ELIP,and focuses on the evaluation methods,electrode materials and electrochemical systems of ELIP.It can be concluded that ELIP is expected to achieve an industrial application and has a promising prospect.In addition,challenges and perspective of electrochemical lithium extraction are also highlighted.
基金Jiangsu provincial financial support of Fundamental Conditions and Science and Technology for people’s livelihood for Jiangsu key laboratory of Advanced Metallic Materials(grant number BM2007204)the National Natural Science Foundation of China(grant number 21475021,21427807)+1 种基金the Natural Science Foundation of Jiangsu Province(grant number BK20141331)the Fundamental Research Funds for the Central Universities(grant number2242016K40083)
文摘Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries.
基金supported by the National Key Project on Basic Research(Grant No.2011CB935904)the National Natural Science Foundation of China(Grant No.21171163,91127020)NSF for Distinguished Young Scholars of Fujian Province(Grant No.2013J06006)
文摘A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1.
基金Rachadapisek Sompoch project,Chulalongkorn University(CU_GR_62_14_62_02)the Energy Conservation and Promotion Fund Office,Ministry of Energy+2 种基金the NSFC(grant 51421091)National Science Foundation for Distinguished Young Scholars for Hebei Province of China(grant E2016203376)Asahi Glass Foundation。
文摘Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are still limited its practice applications. To achieve high performance LIB, the surface-confined strategy has been applied to design and fabricate a new anode material of NiCo-LDH nanosheet anchored on the surface of Ti3C2 MXene(Ni Co-LDH/Ti3C2). The ultra-thin, bended and wrinkled α-phase crystal with an interlayer spacing of 8.1 ? can arrange on the conductive substrates Ti3C2 MXene directly, resulting in high electrolyte diffusion ability and low internal resistance. Furthermore, chemical bond interactions between the highly conductive Ti3C2 MXene and Ni Co-LDH nanosheets can greatly increase the ion and electron transport and reduce the volume expansion of NiCo-LDH during Li ion intercalation. As expected,the discharge capacity of 562 m Ah g-1 at 5.0 A g-1 for 800 cycles without degradation can be achieved,rate capability and cycle performance are better than that of NiCo-LDH(~100 mAh g-1). Furthermore, the density function theory(DFT) calculations were performed to demonstrate that Ni Co-LDH/Ti3C2 system can be used as a highly desirable and promising anode material for lithium ion battery.
基金supported by Nano Special Plan from Shanghai Municipal Science and Technology Plan of Commission(No.l052nm06900)
文摘Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery.
基金supported by the MOST(Grant No.2013CB934000,2014DFG71590,2011CB935902,2010DFA72760,2011CB711202,2013AA050903,2011AA11A257 and 2011AA11A254)China Postdoctoral Science Foundation(Grant No.2013M530599 and 2013M540929)+2 种基金Tsinghua University Initiative Scientific Research Program(Grant No.2010THZ08116,2011THZ08139,2011THZ01004 and 2012THZ08129)the State Key Laboratory of Automotive Safety and Energy(No.ZZ2012-011)Suzhou(Wujiang)Automotive Research Institute,Tsinghua University,Project No.2012WJ-A-01
文摘Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.
基金supported by the National Natural Science Foundation of China(Grant Nos.51325206 and 51372228)National Basic Research Program of China(Grant No.2012CB932900)Shanghai Pujiang Program,China(Grant No.14PJ1403900)
文摘The physical fundamentals and influences upon electrode materials' open-circuit voltage (OCV) and the spatial distribution of electrochemical potential in the full cell are briefly reviewed. We hope to illustrate that a better understanding of these scientific problems can help to develop and design high voltage cathodes and interfaces with low Ohmic drop. OCV is one of the main indices to evaluate the performance of lithium ion batteries (LIBs), and the enhancement of OCV shows promise as a way to increase the energy density. Besides, the severe potential drop at the interfaces indicates high resistance there, which is one of the key factors limiting power density.