Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with ...Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.展开更多
Despite carbonaceous materials are widely employed as commercial negative electrodes for lithium ion battery, an urge requirement for new electrode materials that meet the needs of high energy density, long cycle life...Despite carbonaceous materials are widely employed as commercial negative electrodes for lithium ion battery, an urge requirement for new electrode materials that meet the needs of high energy density, long cycle life, low cost and safety is still underway. A number of cobalt-based compounds(Co(OH)_2, Co_3O_4, CoN, CoS,CoP, NiCo_2O_4, etc.) have been developed over the past years as promising anode materials for lithium ion batteries(LIBs) due to their high theoretical capacity, rich redox reaction and adequate cyclability. The LIBs performances of the cobalt-based compounds have been significantly improved in recent years, and it is anticipated that these materials will become a tangible reality for practical applications in the near future. However, the different types of cobalt-based compounds will result in diverse electrochemical performance. This review briefly analyzes recent progress in this field, especially highlights the synthetic approaches and the prepared nanostructures of the diverse cobalt-based compounds and their corresponding performances in LIBs, including the storage capacity, rate capability, cycling stability and so on.展开更多
Hierarchical mesoporous MoO2/Mo2C/C microspheres,which are composed of primary nanoparticles with a size of about 30 nm,have been designed and synthesized through polymer regulation and subsequent carbonization proces...Hierarchical mesoporous MoO2/Mo2C/C microspheres,which are composed of primary nanoparticles with a size of about 30 nm,have been designed and synthesized through polymer regulation and subsequent carbonization processes.The as-synthesized microspheres were characterized by XRD,Raman,SEM,TEM,XPS measurements and so on.It was found that polyethylene glycol acted as a structure-directing agent,mild reducing agent and carbon source in the formation of these hierarchical mesoporous Mo O2/Mo2C/C microspheres.Moreover,the electrochemical property of the microspheres was also investigated in this work.Evaluated as an anode material for lithium ion batteries,the hierarchical mesoporous Mo O2/Mo2C/C electrode delivered the discharge specific capacities of 665 and 588 m Ah/g after 100 cycles at current densities of 100 and 200 m A/g,respectively.The satisfactory cycling performance and controllable process facilitate the practical applications of the hierarchical mesoporous Mo O2/Mo2C/C as a potential anode material in high-energy density lithium-ion batteries.展开更多
Elemental state matter-heteroatom-doped carbon composites are of great importance for the development of anode in lithium ion batteries(LIBs).In this article,metal–organic frameworks(MOFs)are adopted as precursor to ...Elemental state matter-heteroatom-doped carbon composites are of great importance for the development of anode in lithium ion batteries(LIBs).In this article,metal–organic frameworks(MOFs)are adopted as precursor to prepare Co composites via metallurgical pyrolysis under controllable conditions.The obtained nitrogen-doped porous carbon-Co nanocomposite possesses core–shell structure(Co@C–N).Co@C–N exhibits the best Li storage performances as anode active matter.After the 200th cycles at current density of 0.2 A g^(-1),a reversible capacity of 870 mAh g^(-1)is retained.A reversible capacity of 275 mAh g^(-1)still maintains with 5 A g^(-1).Co@C–N presents a high reversible capacity with excellent cycle stability.Considering the corresponding experimental and theoretical results,the Co0-based N-doped porous carbon composite is proposed to work as LIBs anode matter.These results provide a new design idea for electrode matters of metallic ion battery,and demonstrate that MOFs pyrolysis is an effective method for the construction of elemental state anode materials.展开更多
The lepidocrocite-type H_(1.07)Ti_(1.73)O_(4) microsized structures with a tap density of 0.88 g·cm^(-3) were prepared through the ion exchange method with K_(0.8)Li_(0.27)Ti_(1.73)O_(4) powder as the precursor,a...The lepidocrocite-type H_(1.07)Ti_(1.73)O_(4) microsized structures with a tap density of 0.88 g·cm^(-3) were prepared through the ion exchange method with K_(0.8)Li_(0.27)Ti_(1.73)O_(4) powder as the precursor,and they exhibited good rate performance and outstanding cycle stability as an anode material for lithium ion batteries(LIB).The ion exchange method provides favorable conditions for H_(1.07)Ti_(1.73)O_(4) as an anode electrode material for LIBs.X-ray photoelectron spectroscopy(XPS)result demonstrates the existence of defects in the nonstoichiometric H1.07Ti1.73O4,which have a beneficial effect on the LIB performance.The electrochemical performance test proves that the half-cell with microsized H_(1.07)Ti_(1.73)O_(4)as the anode electrode can maintain a specific capacity of 129.5 mAh·g^(-1) after 1100 cycles and 101 mAh·g^(-1)after 3000 long cycles at high current densities of 2.0 and 5.0 A·g^(-1),respectively.In addition,the small volume change rate of 3.6%in H_(1.07)Ti_(1.73)O_(4)during Li ion insertion was confirmed by real-time in situ transmission electron microscopy(TEM).The LiFePO_(4)||H_(1.07)Ti_(1.73)O_(4)full battery exhibits a longterm cycling stability with a specific capacity of73.8 mAh·g^(-1) at a current density of 500 mA·g^(-1) after 200 cycles.展开更多
ZnO–CuO porous hybrid microspheres were successfully produced through a facile aging process of zinc citrate solid microspheres in copper sulfate solution combined with the subsequent annealing treatment in air atmos...ZnO–CuO porous hybrid microspheres were successfully produced through a facile aging process of zinc citrate solid microspheres in copper sulfate solution combined with the subsequent annealing treatment in air atmosphere. The electrochemical performance investigation suggests that the harvested ZnO–CuO porous hybrid microspheres illustrate much higher specific capacity and better cycling stability than single ZnO counterparts. A reversible capacity of 585 mAh·g^-1 can be acquired for ZnO–CuO porous hybrid microspheres after cycling 500 times at a current density of 200 mA·g^-1. The porous configuration and the incorporation of CuO are responsible for the enhanced lithium storage properties of ZnO–CuO hybrids.展开更多
In this work,via a facile solvothermal route,we synthesized an anode material for lithium ion batteries(LIBs)—SnS2 nanoparticle/graphene(SnS2 NP/GNs) nanocomposite.The nanocomposite consists of SnS2nanoparticles ...In this work,via a facile solvothermal route,we synthesized an anode material for lithium ion batteries(LIBs)—SnS2 nanoparticle/graphene(SnS2 NP/GNs) nanocomposite.The nanocomposite consists of SnS2nanoparticles with an average diameter of 4 nm and graphene nanosheets without restacking.The SnS2 nanoparticles are firmly anchored on the graphene nanosheets.As an anode material for LIBs,the nanocomposite exhibits good Li storage performance especially high rate performance.At the high current rate of 5,10,and 20 A/g,the nanocomposite delivered high capacities of 525,443,and 378 mAh/g,respectively.The good conductivity of the graphene nanosheets and the small particle size of SnS2contribute to the electrochemical performance of SnS2 NP/GNs.展开更多
Transition-metal dichalcogenides (TMDs) exhibit immense potential as lithium/ sodium-ion electrode materials owing to their sandwich-like layered structures. To optimize their lithium/sodium-storage performance, two...Transition-metal dichalcogenides (TMDs) exhibit immense potential as lithium/ sodium-ion electrode materials owing to their sandwich-like layered structures. To optimize their lithium/sodium-storage performance, two issues should be addressed: fundamentally understanding the chemical reaction occurring in TMD electrodes and developing novel TMDs. In this study, WSe2 hexagonal nanoplates were synthesized as lithium/sodium-ion battery (LIB/SIB) electrode materials. For LIBs, the WSe2-nanoplate electrodes achieved a stable reversible capacity and a high rate capability, as well as an ultralong cycle life of up to 1,500 cycles at 1,000 mA·g^-1. Most importantly, in situ Raman spectroscopy, ex situ X-ray diffraction (XRD), transmission electron microscopy, and electrochemical impedance spectroscopy measurements performed during the discharge-charge process clearly verified the reversible conversion mechanism, which can be summarized as follows: WSe2 + 4Li^+ + 4e^- ←→ W + 2Li2Se. The WSe2 nanoplates also exhibited excellent cycling performance and a high rate capability as SIB electrodes. Ex situ XRD and Raman spectroscopy results demonstrate that WSe2 reacted with Na^+ more easily and thoroughly than with Li^+ and converted to Na2Se and tungsten in the Ist sodiated state. The subsequent charging reaction can be expressed as Na2Se → Se + 2Na^++ 2e^-, which differs from the traditional conversion mechanism for LIBs. To our knowledge, this is the first systematic exploration of the lithium/sodium-storage performance of WSe2 and the mechanism involved.展开更多
基金the Program for the NSFC (Nos. 51302325, 51201115, 51471121)New Century Excellent Talents in University (No. NCET-12-0553)+4 种基金Program for Shenghua Overseas Talent (No. 1681-7607030005) from Central South UniversityHubei Provincial Natural Science Foundation (No. 2014CFB261)the partial financial support from the Open-End Fund for the Valuable and Precision Instruments of Central South University (No. CSUZC2014032)Fundamental Research Funds for the Central Universities (No. 2042015kf0184)Wuhan University
文摘Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow Sn O2@C nanoparticles(NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach.The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries(LIBs), the as-prepared hollow Sn O2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 m Ah g 1, and the current density is 3910 m A g 1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 m Ah g 1at the rate performances in which the current density is recovered to 156.4 m A g 1(0.2 C). Undoubtedly, sub-100 nm Sn O2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.
基金financially supported by the‘‘1000 Talents Recruitment Program’’of Chinese government,University of Science and Technology Beijingthe Fundamental Research Funds for the Central Universities(No.FRF-TP-16-070A1)
文摘Despite carbonaceous materials are widely employed as commercial negative electrodes for lithium ion battery, an urge requirement for new electrode materials that meet the needs of high energy density, long cycle life, low cost and safety is still underway. A number of cobalt-based compounds(Co(OH)_2, Co_3O_4, CoN, CoS,CoP, NiCo_2O_4, etc.) have been developed over the past years as promising anode materials for lithium ion batteries(LIBs) due to their high theoretical capacity, rich redox reaction and adequate cyclability. The LIBs performances of the cobalt-based compounds have been significantly improved in recent years, and it is anticipated that these materials will become a tangible reality for practical applications in the near future. However, the different types of cobalt-based compounds will result in diverse electrochemical performance. This review briefly analyzes recent progress in this field, especially highlights the synthetic approaches and the prepared nanostructures of the diverse cobalt-based compounds and their corresponding performances in LIBs, including the storage capacity, rate capability, cycling stability and so on.
基金supported by the National Natural Science Foundation of China(No.21376251 and 21406233)the National Basic Research Development Program of China(2013CB632600)
文摘Hierarchical mesoporous MoO2/Mo2C/C microspheres,which are composed of primary nanoparticles with a size of about 30 nm,have been designed and synthesized through polymer regulation and subsequent carbonization processes.The as-synthesized microspheres were characterized by XRD,Raman,SEM,TEM,XPS measurements and so on.It was found that polyethylene glycol acted as a structure-directing agent,mild reducing agent and carbon source in the formation of these hierarchical mesoporous Mo O2/Mo2C/C microspheres.Moreover,the electrochemical property of the microspheres was also investigated in this work.Evaluated as an anode material for lithium ion batteries,the hierarchical mesoporous Mo O2/Mo2C/C electrode delivered the discharge specific capacities of 665 and 588 m Ah/g after 100 cycles at current densities of 100 and 200 m A/g,respectively.The satisfactory cycling performance and controllable process facilitate the practical applications of the hierarchical mesoporous Mo O2/Mo2C/C as a potential anode material in high-energy density lithium-ion batteries.
基金the National Natural Science Foundation of China(Nos.31530010 and 21401168)the Special Project of Guangdong Province to Introduce Innovation and Entrepreneurship Team(No.2016ZT06N467)is acknowledged.
文摘Elemental state matter-heteroatom-doped carbon composites are of great importance for the development of anode in lithium ion batteries(LIBs).In this article,metal–organic frameworks(MOFs)are adopted as precursor to prepare Co composites via metallurgical pyrolysis under controllable conditions.The obtained nitrogen-doped porous carbon-Co nanocomposite possesses core–shell structure(Co@C–N).Co@C–N exhibits the best Li storage performances as anode active matter.After the 200th cycles at current density of 0.2 A g^(-1),a reversible capacity of 870 mAh g^(-1)is retained.A reversible capacity of 275 mAh g^(-1)still maintains with 5 A g^(-1).Co@C–N presents a high reversible capacity with excellent cycle stability.Considering the corresponding experimental and theoretical results,the Co0-based N-doped porous carbon composite is proposed to work as LIBs anode matter.These results provide a new design idea for electrode matters of metallic ion battery,and demonstrate that MOFs pyrolysis is an effective method for the construction of elemental state anode materials.
基金supported by the National Natural Science Foundation of China(Nos.U1804132,51802288 and 11504331)Academic Improvement Program of Physics of Zhengzhou University(No.2018WLTJ02)Zhengzhou University Youth Talent Start-up Grant,Zhongyuan Youth Talent Support Program of Henan Province(No.ZYQR201912152)。
文摘The lepidocrocite-type H_(1.07)Ti_(1.73)O_(4) microsized structures with a tap density of 0.88 g·cm^(-3) were prepared through the ion exchange method with K_(0.8)Li_(0.27)Ti_(1.73)O_(4) powder as the precursor,and they exhibited good rate performance and outstanding cycle stability as an anode material for lithium ion batteries(LIB).The ion exchange method provides favorable conditions for H_(1.07)Ti_(1.73)O_(4) as an anode electrode material for LIBs.X-ray photoelectron spectroscopy(XPS)result demonstrates the existence of defects in the nonstoichiometric H1.07Ti1.73O4,which have a beneficial effect on the LIB performance.The electrochemical performance test proves that the half-cell with microsized H_(1.07)Ti_(1.73)O_(4)as the anode electrode can maintain a specific capacity of 129.5 mAh·g^(-1) after 1100 cycles and 101 mAh·g^(-1)after 3000 long cycles at high current densities of 2.0 and 5.0 A·g^(-1),respectively.In addition,the small volume change rate of 3.6%in H_(1.07)Ti_(1.73)O_(4)during Li ion insertion was confirmed by real-time in situ transmission electron microscopy(TEM).The LiFePO_(4)||H_(1.07)Ti_(1.73)O_(4)full battery exhibits a longterm cycling stability with a specific capacity of73.8 mAh·g^(-1) at a current density of 500 mA·g^(-1) after 200 cycles.
基金financially supported by the National Key Research Program of China(No.2016YFA0202602)the National Natural Science Foundation of China(Nos.51371154 and 51571167)the Natural Science Foundation of Fujian Province of China(No.2017J05087)
文摘ZnO–CuO porous hybrid microspheres were successfully produced through a facile aging process of zinc citrate solid microspheres in copper sulfate solution combined with the subsequent annealing treatment in air atmosphere. The electrochemical performance investigation suggests that the harvested ZnO–CuO porous hybrid microspheres illustrate much higher specific capacity and better cycling stability than single ZnO counterparts. A reversible capacity of 585 mAh·g^-1 can be acquired for ZnO–CuO porous hybrid microspheres after cycling 500 times at a current density of 200 mA·g^-1. The porous configuration and the incorporation of CuO are responsible for the enhanced lithium storage properties of ZnO–CuO hybrids.
基金financially supported by the National Natural Science Foundation of China (No. 21475085)the key scientific research project of high schools in Henan Province (Nos. 16A430025 & 17A480009)
文摘In this work,via a facile solvothermal route,we synthesized an anode material for lithium ion batteries(LIBs)—SnS2 nanoparticle/graphene(SnS2 NP/GNs) nanocomposite.The nanocomposite consists of SnS2nanoparticles with an average diameter of 4 nm and graphene nanosheets without restacking.The SnS2 nanoparticles are firmly anchored on the graphene nanosheets.As an anode material for LIBs,the nanocomposite exhibits good Li storage performance especially high rate performance.At the high current rate of 5,10,and 20 A/g,the nanocomposite delivered high capacities of 525,443,and 378 mAh/g,respectively.The good conductivity of the graphene nanosheets and the small particle size of SnS2contribute to the electrochemical performance of SnS2 NP/GNs.
基金The authors gratefully acknowledge financial support by National Natural Science Foundation of China (Nos. 51371106 and 51671115), and Young Tip-top Talent Support Project (the Organization Department of the Central Committee of the CPC).
文摘Transition-metal dichalcogenides (TMDs) exhibit immense potential as lithium/ sodium-ion electrode materials owing to their sandwich-like layered structures. To optimize their lithium/sodium-storage performance, two issues should be addressed: fundamentally understanding the chemical reaction occurring in TMD electrodes and developing novel TMDs. In this study, WSe2 hexagonal nanoplates were synthesized as lithium/sodium-ion battery (LIB/SIB) electrode materials. For LIBs, the WSe2-nanoplate electrodes achieved a stable reversible capacity and a high rate capability, as well as an ultralong cycle life of up to 1,500 cycles at 1,000 mA·g^-1. Most importantly, in situ Raman spectroscopy, ex situ X-ray diffraction (XRD), transmission electron microscopy, and electrochemical impedance spectroscopy measurements performed during the discharge-charge process clearly verified the reversible conversion mechanism, which can be summarized as follows: WSe2 + 4Li^+ + 4e^- ←→ W + 2Li2Se. The WSe2 nanoplates also exhibited excellent cycling performance and a high rate capability as SIB electrodes. Ex situ XRD and Raman spectroscopy results demonstrate that WSe2 reacted with Na^+ more easily and thoroughly than with Li^+ and converted to Na2Se and tungsten in the Ist sodiated state. The subsequent charging reaction can be expressed as Na2Se → Se + 2Na^++ 2e^-, which differs from the traditional conversion mechanism for LIBs. To our knowledge, this is the first systematic exploration of the lithium/sodium-storage performance of WSe2 and the mechanism involved.