The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention ha...The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production.展开更多
The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below ...The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 °C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(?6) S/cm.展开更多
We have prepared a high-density polyaniline(PANI) paste(50 mg/m L), with similar physical properties to those of paints or pigments. The synthesis of PANI is confirmed by Fourier transform infrared(FT-IR) spectr...We have prepared a high-density polyaniline(PANI) paste(50 mg/m L), with similar physical properties to those of paints or pigments. The synthesis of PANI is confirmed by Fourier transform infrared(FT-IR) spectroscopy. The morphologies of PANI, doped PANI, and doped PANI paste are confirmed by scanning electron microscopy(SEM). Particles of doped PANI paste are approximately 40–50 nm in diameter, with a uniform and cubic shape. The electrochemical performances of doped PANI paste using both liquid and solid polymer electrolytes have been measured by galvanostatic charge and discharge process. The cell fabricated with doped PANI paste and the solid polymer electrolyte exhibits a discharge capacity of ~87 μAh/cm2(64.0 m Ah/g) at the second cycle and~67 μAh/cm2(50.1 m Ah/g) at the 100 th cycle.展开更多
With an ultimate range up to 1000 km,a maximum operating depth of 6000 m,and a generous payload capacity,Autosub6000 is well placed to become one of the world's most capable deep diving Autonomous Underwater Vehic...With an ultimate range up to 1000 km,a maximum operating depth of 6000 m,and a generous payload capacity,Autosub6000 is well placed to become one of the world's most capable deep diving Autonomous Underwater Vehicles(AUVs). Recently,Autosub6000 successfully completed its first deep water engineering trials,and in September 2008,fitted with a multibeam sonar,will carry out its first science missions.This paper will describe how we are tackling the design issues that specifically affect a deep diving AUV which must be capable of operating with true autonomy,independently of the mother ship, namely:carrying adequate energy for long endurance and range,coping with varying buoyancy,and maintaining accurate navigation throughout missions lasting up to several days.Results from the recent engineering trails are presented,and future missions and development plans are discussed.展开更多
The interest for solid-state lithium metal(Li◦)batteries(SSLMBs)has been growing exponentially in recent years in view of their higher energy density and eliminated safety concerns.Solid polymer electrolytes(SPEs)are ...The interest for solid-state lithium metal(Li◦)batteries(SSLMBs)has been growing exponentially in recent years in view of their higher energy density and eliminated safety concerns.Solid polymer electrolytes(SPEs)are soft ionic conductors which can be easily processed into thin films at industrial level;these unique features confer solid-state Li◦polymer batteries(SSLMPBs,i.e.,SSLMBs utilizing SPEs as electrolytes)distinct advantages compared to SSLMBs containing other electrolytes.In this article,we briefly review recent progresses and achievements in SSLMPBs including the improvement of ionic conductivity of SPEs and their interfacial stability with Li◦anode.Moreover,we outline several advanced in-situ and ex-situ characterizing techniques which could assist in-depth understanding of the anode-electrolyte interphases in SSLMPBs.This article is hoped not only to update the state-of-the-art in the research on SSLMPBs but also to bring intriguing insights that could improve the fundamental properties(e.g.,transport,dendrite formation,and growth,etc.)and electrochemical performance of SSLMPBs.展开更多
Lithium polymer batteries(LPBs) rely on a high ion transport to gain improved cell performance.Thermostable and porous gel polymer electrolytes(GPEs) have attracted much attention due to their excellent properties in ...Lithium polymer batteries(LPBs) rely on a high ion transport to gain improved cell performance.Thermostable and porous gel polymer electrolytes(GPEs) have attracted much attention due to their excellent properties in electrolyte wettability and ionic conductivity.In this work,iron-nickel-cobalt trimetal Prussian blue analogue(PBA) nanocubes are filled into the electro spun polyacrylonitrile(PAN)-based membranes to generate GPE composites with morphological superiority consisting of fine fibers and interconnected pores.The thus obtained PBA@PAN fibrous membrane showcases good thermal stability,high porosity and electrolyte uptake,as well as a peak io nic conductivity of 2.7 mS/cm with the addition of 10% PBA,Consequently,the assembled lithium iron phosphate(LiFePO_(4)) battery using PBA@PAN-10 as the GPE delivers a high capacity of 152.2 mAh/g at 0.2 C and an ultralow capacity decay of0.09% per cycle in a long-te rm cycle life of 350 cycles at 1 C,endorsing its promising applications in LPBs.展开更多
Conductive organic polymers with carbonyl groups are considered as potential cathode materials of the Li^+ battery. Driven by extremely high pressure, 2-butyndioic acid and its Li~+ salt polymerize at around 4 and 1...Conductive organic polymers with carbonyl groups are considered as potential cathode materials of the Li^+ battery. Driven by extremely high pressure, 2-butyndioic acid and its Li~+ salt polymerize at around 4 and 10 GPa, respectively, which demonstrates that pressure-induced polymerization is a robust method for synthesizing substituted polyacetylene-like conductors.展开更多
基金The support provided by the German Federal Ministry of Education and Research(BMBF)within the project“Benchbatt”(03XP0047B)is gratefully acknowledged.
文摘The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production.
文摘The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 °C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(?6) S/cm.
基金supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Korean Ministry of Knowledge Economy and by the Priority Research Centers Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2009-0093818)
文摘We have prepared a high-density polyaniline(PANI) paste(50 mg/m L), with similar physical properties to those of paints or pigments. The synthesis of PANI is confirmed by Fourier transform infrared(FT-IR) spectroscopy. The morphologies of PANI, doped PANI, and doped PANI paste are confirmed by scanning electron microscopy(SEM). Particles of doped PANI paste are approximately 40–50 nm in diameter, with a uniform and cubic shape. The electrochemical performances of doped PANI paste using both liquid and solid polymer electrolytes have been measured by galvanostatic charge and discharge process. The cell fabricated with doped PANI paste and the solid polymer electrolyte exhibits a discharge capacity of ~87 μAh/cm2(64.0 m Ah/g) at the second cycle and~67 μAh/cm2(50.1 m Ah/g) at the 100 th cycle.
文摘With an ultimate range up to 1000 km,a maximum operating depth of 6000 m,and a generous payload capacity,Autosub6000 is well placed to become one of the world's most capable deep diving Autonomous Underwater Vehicles(AUVs). Recently,Autosub6000 successfully completed its first deep water engineering trials,and in September 2008,fitted with a multibeam sonar,will carry out its first science missions.This paper will describe how we are tackling the design issues that specifically affect a deep diving AUV which must be capable of operating with true autonomy,independently of the mother ship, namely:carrying adequate energy for long endurance and range,coping with varying buoyancy,and maintaining accurate navigation throughout missions lasting up to several days.Results from the recent engineering trails are presented,and future missions and development plans are discussed.
基金NationalNatural Science Foundation of China,Grant/Award Numbers:51773092,21975124Research Foundation of Material-orientedChemicalEngineering StateKey Lab,Grant/Award Number:ZK201717+1 种基金FundamentalResearch Funds for the CentralUniversities,Grant/Award Number:2020kfyXJJS095Spanish Government,Grant/Award Number:MINECO RETOS/RTI2018-098301-B-I00。
文摘The interest for solid-state lithium metal(Li◦)batteries(SSLMBs)has been growing exponentially in recent years in view of their higher energy density and eliminated safety concerns.Solid polymer electrolytes(SPEs)are soft ionic conductors which can be easily processed into thin films at industrial level;these unique features confer solid-state Li◦polymer batteries(SSLMPBs,i.e.,SSLMBs utilizing SPEs as electrolytes)distinct advantages compared to SSLMBs containing other electrolytes.In this article,we briefly review recent progresses and achievements in SSLMPBs including the improvement of ionic conductivity of SPEs and their interfacial stability with Li◦anode.Moreover,we outline several advanced in-situ and ex-situ characterizing techniques which could assist in-depth understanding of the anode-electrolyte interphases in SSLMPBs.This article is hoped not only to update the state-of-the-art in the research on SSLMPBs but also to bring intriguing insights that could improve the fundamental properties(e.g.,transport,dendrite formation,and growth,etc.)and electrochemical performance of SSLMPBs.
基金supported by Natural Science Foundation of China (Nos.21805201 and 21701118)Postdoctoral Science Foundation ofChina (Nos.2018T110544 and 2017M611899)+2 种基金Natural Science Foundation of Jiangsu Province (No.BK20170341)the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau (No.SYG201748)support by Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies。
文摘Lithium polymer batteries(LPBs) rely on a high ion transport to gain improved cell performance.Thermostable and porous gel polymer electrolytes(GPEs) have attracted much attention due to their excellent properties in electrolyte wettability and ionic conductivity.In this work,iron-nickel-cobalt trimetal Prussian blue analogue(PBA) nanocubes are filled into the electro spun polyacrylonitrile(PAN)-based membranes to generate GPE composites with morphological superiority consisting of fine fibers and interconnected pores.The thus obtained PBA@PAN fibrous membrane showcases good thermal stability,high porosity and electrolyte uptake,as well as a peak io nic conductivity of 2.7 mS/cm with the addition of 10% PBA,Consequently,the assembled lithium iron phosphate(LiFePO_(4)) battery using PBA@PAN-10 as the GPE delivers a high capacity of 152.2 mAh/g at 0.2 C and an ultralow capacity decay of0.09% per cycle in a long-te rm cycle life of 350 cycles at 1 C,endorsing its promising applications in LPBs.
基金the support of NSAF(Nos. U1530402)National Natural Science Foundation of China (Nos. 21501162, 21601007 and 21671028)+3 种基金supported by DOENNSA under Award No. DE-NA0001974DOEBES under Award No. DE-FG02-99ER45775funding by NSFsupported by DOE-BES, under Contract No. DE-AC02-06CH11357
文摘Conductive organic polymers with carbonyl groups are considered as potential cathode materials of the Li^+ battery. Driven by extremely high pressure, 2-butyndioic acid and its Li~+ salt polymerize at around 4 and 10 GPa, respectively, which demonstrates that pressure-induced polymerization is a robust method for synthesizing substituted polyacetylene-like conductors.