期刊文献+
共找到5,290篇文章
< 1 2 250 >
每页显示 20 50 100
Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating 被引量:3
1
作者 Wei Liu Jinxing Li +2 位作者 Hanying Xu Jie Li Xinping Qiu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期917-924,共8页
Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,c... Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed. 展开更多
关键词 cobalt-free lithium-rich cathode materials lithium fluoride coating cycle stability DISSOLUTION
下载PDF
Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries:Understanding from atomic structure to nano-engineering 被引量:4
2
作者 Majid Farahmandjou Shuoqing Zhao +3 位作者 Wei-Hong Lai Bing Sun Peter.H.L.Notten Guoxiu Wang 《Nano Materials Science》 EI CAS CSCD 2022年第4期322-338,共17页
Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully re... Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity,high stability,and low voltage hysteresis for lithiumrich cathode materials.Therefore,it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials,including atomic structure design,and nano-scale materials engineering technologies.Herein,we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry.Particularly,we highlight the oxygen-based redox reactions in lithium-rich metal oxides,with critical views of designing next generation oxygen redox lithium cathode materials.Furthermore,we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale. 展开更多
关键词 Oxygen redox chemistry lithium-rich cathode Li-ion batteries Atomic structure Nano-engineering
下载PDF
Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
3
作者 Wenhua Yu Yanyan Wang +5 位作者 Aimin Wu Aikui Li Zhiwen Qiu Xufeng Dong Chuang Dong Hao Huang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期138-151,共14页
Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ... Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density. 展开更多
关键词 lithium-rich manganese-based cathodes Lithium ion batteries Oxygen redox Oxygen evolution Integrated strategy
下载PDF
Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries 被引量:1
4
作者 Kouthaman Mathiyalagan Dongwoo Shin Young-Chul Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期40-57,I0003,共19页
Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devi... Energy-storage systems and their production have attracted significant interest for practical applications.Batteries are the foundation of sustainable energy sources for electric vehicles(EVs),portable electronic devices(PEDs),etc.In recent decades,Lithium-ion batteries(LIBs) have been extensively utilized in largescale energy storage devices owing to their long cycle life and high energy density.However,the high cost and limited availability of Li are the two main obstacles for LIBs.In this regard,sodium-ion batteries(SIBs) are attractive alternatives to LIBs for large-scale energy storage systems because of the abundance and low cost of sodium materials.Cathode is one of the most important components in the battery,which limits cost and performance of a battery.Among the classified cathode structures,layered structure materials have attracted attention because of their high ionic conductivity,fast diffusion rate,and high specific capacity.Here,we present a comprehensive review of the classification of layered structures and the preparation of layered materials.Furthermore,the review article discusses extensively about the issues of the layered materials,namely(1) electrochemical degradation,(2) irreversible structural changes,and(3) structural instability,and also it provides strategies to overcome the issues such as elemental phase composition,a small amount of elemental doping,structural design,and surface alteration for emerging SIBs.In addition,the article discusses about the recent research development on layered unary,binary,ternary,quaternary,quinary,and senary-based O3-and P2-type cathode materials for high-energy SIBs.This review article provides useful information for the development of high-energy layered sodium transition metal oxide P2 and O3-cathode materials for practical SIBs. 展开更多
关键词 O3-type P2-type cathode materials Sodium-ion batteries Layered structure
下载PDF
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
5
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation Structural stability Lithium-ion battery
下载PDF
Research progresses on cathode materials of aqueous zinc-ion batteries
6
作者 Zengyuan Fan Jiawei Wang +3 位作者 Yunpeng Wu Xuedong Yan Dongmei Dai Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期237-264,I0005,共29页
Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold ... Electrochemical energy storage and conversion techniques that exhibit the merits such as high energy density,rapid response kinetics,economical maintenance requirements and expedient installation procedures will hold a pivotal role in the forthcoming energy storage technologies revolution.In recent years,aqueous zinc-ion batteries(AZIBs)have garnered substantial attention as a compelling candidate for large-scale energy storage systems,primarily attributable to their advantageous featu res encompassing cost-effectiveness,environmental sustainability,and robust safety profiles.Currently,one of the primary factors hindering the further development of AZIBs originates from the challenge of cathode materials.Specifically,the three mainstream types of mainstream cathode materials,in terms of manganese-based compounds,vanadium-based compounds and Prussian blue analogues,surfer from the dissolution of Mn~(2+),in the low discharge voltage,and the low specific capacity,respectively.Several strategies have been developed to compensation the above intrinsic defects for these cathode materials,including the ionic doping,defect engineering,and materials match.Accordingly,this review first provides a systematic summarization of the zinc storage mechanism in AZIBs,following by the inherent merit and demerit of three kind of cathode materials during zinc storage analyzed from their structure characteristic,and then the recent development of critical strategies towards the intrinsic insufficiency of these cathode materials.In this review,the methodologies aimed at enhancing the efficacy of manganese-based and vanadium-based compounds are emphasis emphasized.Additionally,the article outlines the future prospective directions as well as strategic proposal for cathode materials in AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries cathode materials Optimization strategies
下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
7
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
下载PDF
Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries
8
作者 Yuan Yuan Si Wu +2 位作者 Xiaoxue Song Jin Yong Lee Baotao Kang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期14-31,共18页
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay... Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs. 展开更多
关键词 layered cathode materials modifying strategies structure regulation zinc-ion batteries
下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
9
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary cathode materials Electrochemical Performance
下载PDF
Perspectives in Electrochemical in situ Structural Reconstruction of Cathode Materials for Multivalent-ion Storage 被引量:3
10
作者 Jing Huang Xuefang Xie +2 位作者 Kun Liu Shuquan Liang Guozhao Fang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期72-86,共15页
Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the s... Multivalent-ion(such as Zn^(2+),Mg^(2+),Al^(3+))batteries are considered as a prospective alternative for large-scale energy storage.However,the main problem of cathode materials for multivalent-ion batteries is the sluggish diffusion of multivalent ions.Many cathode materials will self-adjust under electrochemical conditions to achieve the optimal state for multivalent-ion storage.In this review,the significant role of electrochemical in situ structural reconstruction of cathode materials is suggested.The types,basic characteristics,and formation mechanisms of reconstructed phases have been systematically discussed and commented.The most important insight we pointed out is that the cathode materials with loose structures after in situ electrochemical activation are conducive to the reversible diffusion of multivalent ions.Moreover,several crucial issues of electrochemical activation and reconstruction were further analyzed and discussed.The challenges and future perspectives are presented in the final section. 展开更多
关键词 cathode materials electrochemical activation in situ reconstruction multivalent-ion batteries
下载PDF
Low-temperatures synthesis of CuS nanospheres as cathode material for magnesium second batteries 被引量:2
11
作者 Qin Zhang Yaobo Hu +1 位作者 Jun Wang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期192-200,共9页
Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching ... Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching for suitable cathode materials with fast diffusion kinetics and exploring their magnesium storage mechanisms remains a great challenge.Cu S submicron spheres,made by a facile low-temperature synthesis strategy,were applied as the high-performance cathode for RMBs in this work,which can deliver a high specific capacity of 396mAh g^(-1)at 20 mA g^(-1) and a remarkable rate capacity of 250 m Ah g^(-1)at 1000 mA g^(-1).The excellent rate performance can be assigned to the nano needle-like particles on the surface of Cu S submicron spheres,which can facilitate the diffusion kinetics of Mg^(2+).Further storage mechanism investigations illustrate that the Cu S cathodes experience a two-step conversion reaction controlled by diffusion during the electrochemical reaction process.This work could make a contribution to the study of the enhancement of diffusion kinetics of Mg2+and the reaction mechanism of RMBs. 展开更多
关键词 Magnesium second batteries cathode material CUS Submicron spheres Low-temperature synthesis.
下载PDF
Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy 被引量:1
12
作者 Hui Tong Yi Li +4 位作者 Gaoqiang Mao Chaolei Wang Wanjing Yu Yong Liu Mudan Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1162-1170,共9页
With the number of decommissioned electric vehicles increasing annually,a large amount of discarded power battery cathode material is in urgent need of treatment.However,common leaching methods for recovering metal sa... With the number of decommissioned electric vehicles increasing annually,a large amount of discarded power battery cathode material is in urgent need of treatment.However,common leaching methods for recovering metal salts are economically inefficient and polluting.Meanwhile,the recycled material obtained by lithium remediation alone has limited performance in cycling stability.Herein,a short method of solid-phase reduction is developed to recover spent LiFePO4 by simultaneously introducing Mg2+ions for hetero-atom doping.Issues of particle agglomeration,carbon layer breakage,lithium loss,and Fe3+defects in spent LiFePO4 are also addressed.Results show that Mg2+addition during regeneration can remarkably enhance the crystal structure stability and improve the Li+diffusion coefficient.The regenerated LiFePO4 exhibits significantly improved electrochemical performance with a specific discharge capacity of 143.2 mAh·g^(−1)at 0.2 C,and its capacity retention is extremely increased from 37.9%to 98.5%over 200 cycles at 1 C.Especially,its discharge capacity can reach 95.5 mAh·g^(−1)at 10 C,which is higher than that of spent LiFePO4(55.9 mAh·g^(−1)).All these results show that the proposed regeneration strategy of simultaneous carbon coating and Mg2+doping is suitable for the efficient treatment of spent LiFePO4. 展开更多
关键词 spent LiFePO4 solid-phase reduction repair and regeneration cathode materials lithium-ion batteries
下载PDF
Enhanced Electrochemical Performances of Ni Doped Cr_(8)O_(21)Cathode Materials for Lithium-ion Batteries 被引量:1
13
作者 TANG Guoli LIU Hanxing +2 位作者 YU Zhiyong YANG Bo KONG Linghua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1242-1247,共6页
Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that th... Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that the discharge capacities of the samples depend on the nickel contents,which increases firstly and then decreases with increasing Ni contents.Optimized Ni_(0.5)Cr_(7.5)O_(21)delivers a first capacity up to 392.6 m Ah·g^(-1)at 0.1C.In addition,Ni doped sample also demonstrates enhanced cycling stability and rate capability compared with that of the bare Cr_(8)O_(21).At 1 C,an initial discharge capacity of 348.7 m Ah·g^(-1)was achieved for Ni_(0.5)Cr_(7.5)O_(21),much higher than 271.4 m Ah·g^(-1)of the un-doped sample,with an increase of more than 28%.Electrochemical impedance spectroscopy results confirm that Ni doping reduces the growth of interface resistance and charge transfer resistance,which is conducive to the electrochemical kinetic behaviors during charge-discharge. 展开更多
关键词 Cr_(8)O_(21) cathode material DOPING electrochemical performances lithium-ion batteries
下载PDF
Selenium-doped cathode materials with polyaniline skeleton for lithium-organosulfur batteries
14
作者 Rong Zou Wenwu Liu Fen Ran 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期148-157,共10页
Sulfur-containing polymer(SCP)is considered as an outstanding cathode material for lithium-sulfur batteries.However,undesirable soluble polysulfides may shuttle in electrolyte,concluding long-chain Li_(2)S_(n)(n>4)... Sulfur-containing polymer(SCP)is considered as an outstanding cathode material for lithium-sulfur batteries.However,undesirable soluble polysulfides may shuttle in electrolyte,concluding long-chain Li_(2)S_(n)(n>4)and short-chain Li2Sn(n≤4),as well as the sluggish conversion kinetics are yet to be solved to enhance the performance of lithium-sulfur batteries.Here Se-doped sulfurized polyaniline with adjusted sulfur-chain-S_(x)-(x≤6)contribute to ensure the absence of long-chain polysulfides,and the skeleton with quinoid imine can endow strongly adsorption towards short-chain polysulfides by the reversible transition between deprotonated/protonated imine(-NH^(+)=and-N=),which offer double insurance against suppressing“shuttle effect”.Furthermore,Se atoms are doped into sulfurized polysulfides to accelerate the redox conversion and take a frontier orbital theory-oriented view into catalytic mechanism.Se-doped sulfurized polyaniline as active materials for lithium-organosulfur batteries delivers good electrochemical performance,including high rate,reversible specific capacity(680 mA h g^(-1)at 0.1 A g^(-1)),and lower capacity decay rate only of 0.15%with near 100%coulomb efficiency during long-term cycle.This work provides a valuable guiding ideology and promising solution for the chemistry-oriented structure design and practical application for lithium-organosulfur batteries. 展开更多
关键词 Lithium-organosulfur batteries Selenium-doped cathode materials Sulfur-containing polymer Frontier orbital theory
下载PDF
Defective layered Mn-based cathode materials with excellent performance via ion exchange for Li-ion batteries
15
作者 Yongheng Si Kun Bai +4 位作者 Yaxin Wang Han Lu Litong Liu Ziyan Long Yujuan Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期537-546,I0012,共11页
Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control th... Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application. 展开更多
关键词 Ion exchange Defective cathode materials Oxygen vacancies Initial coulombic efficiency DFT calculations
下载PDF
Organic cathode materials for rechargeable magnesium-ion batteries:Fundamentals, recent advances, and approaches to optimization
16
作者 Xiaoqian He Ruiqi Cheng +6 位作者 Xinyu Sun Hao Xu Zhao Li Fengzhan Sun Yang Zhan Jianxin Zou Richard M.Laine 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4359-4389,共31页
Rechargeable magnesium-ion batteries(MIBs) are favorable substitutes for conventional lithium-ion batteries(LIBs) because of abundant magnesium reserves, a high theoretical energy density, and great inherent safety. O... Rechargeable magnesium-ion batteries(MIBs) are favorable substitutes for conventional lithium-ion batteries(LIBs) because of abundant magnesium reserves, a high theoretical energy density, and great inherent safety. Organic electrode materials with excellent structural tunability,unique coordination reaction mechanisms, and environmental friendliness offer great potential to promote the electrochemical performance of MIBs. However, research on organic magnesium battery cathode materials is still preliminary with many significant challenges to be resolved including low electrical conductivity and unwanted but severe dissolution in useful electrolytes. Herein, we provide a detailed overview of reported organic cathode materials for MIBs. We begin with basic properties such as charge storage mechanisms(e.g., n-, p-, and bipolartype), moving to recent advances in various types of organic cathodes including carbonyl-, nitrogen-, and sulfur-based materials. To shed light on the diverse strategies targeting high-performance Mg-organic batteries, elaborate summaries of various approaches are presented.Generally, these strategies include molecular design, polymerization, mixing with carbon, nanosizing and electrolyte/separator optimization.This review provides insights on exploring high-performance organic cathodes in rechargeable MIBs. 展开更多
关键词 Mg-organic batteries Organic cathode materials Energy storage Charge storage mechanism Electrochemical optimization approaches
下载PDF
CoSnO_(3)/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries
17
作者 Shuainan Guo Mingquan Liu +3 位作者 Haoyi Yang Xin Feng Ying Bai Chuan Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期883-892,共10页
Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-elec... Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs. 展开更多
关键词 Rechargeable aluminum batteries Mixed transition-metal oxides CoSnO_(3)/C cathode material Oxygen vacancy
下载PDF
Influences of transition metal on structural and electrochemical properties of Li[Ni_xCo_yMn_z]O_2(0.6≤x≤0.8) cathode materials for lithium-ion batteries 被引量:5
18
作者 潘成迟 朱裔荣 +5 位作者 杨应昌 侯红帅 景明俊 宋维鑫 杨旭明 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1396-1402,共7页
Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observ... Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observed from X-ray diffraction(XRD)increases with decreasing the Ni content or increasing the Co content.The scanning electron microscopy(SEM) images reveal that the small primary particles are agglomerated to form the secondary ones.As the Mn content increases,the primary and secondary particles become larger and the resulted particle size for the Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 is uniformly distributed in the range of100-300 nm.Although the initial discharge capacity of the Li/Li[NixCoyMn2]O2 cells reduces with decreasing the Ni content,the cyclic performance and rate capability are improved with higher Mn or Co content.The Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 can deliver excellent cyclability with a capacity retention of 97.1%after 50 cycles. 展开更多
关键词 Li[NixCoyMnz]O2 electrochemical performance cathode material lithium-ion battery
下载PDF
Suppressed Internal Intrinsic Stress Engineering in High-Performance Ni-Rich Cathode Via Multi layered In Situ Coating Structure 被引量:1
19
作者 Jiachao Yang Yunjiao Li +3 位作者 Xiaoming Xi Junchao Zheng Jian Yu Zhenjiang He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期58-66,共9页
LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni... LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material. 展开更多
关键词 compensating doped in situ coating multilayer material Ni-rich cathode materials suppressed internal strain
下载PDF
Grinding sol gel synthesis and electrochemical performance of mesoporous Li_3V_2(PO_4)_3 cathode materials 被引量:3
20
作者 刘国聪 刘又年 刘素琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期439-444,共6页
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint... Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature. 展开更多
关键词 Li3Vz(PO4)3 cathode material mesoporous structure grinding-sol-gel method electrochemical performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部