期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Monolayer MoS_(2)Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries 被引量:2
1
作者 Meisheng Han Yongbiao Mu +3 位作者 Jincong Guo Lei Wei Lin Zeng Tianshou Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期126-142,共17页
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS... High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries. 展开更多
关键词 Monolayer MoS_(2) Interlayer electrostatic repulsion Co atoms doping Surface-capacitance effect Fast-charging lithiumion batteries
下载PDF
One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability 被引量:3
2
作者 Peng Wang Xiaobing Lou +3 位作者 Chao Li Xiaoshi Hu Qi Yang Bingwen Hu 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期3-11,共9页
Nanowire coordination polymer cobalt–terephthalonitrile(Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries(LIBs). A reversible capacity of... Nanowire coordination polymer cobalt–terephthalonitrile(Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries(LIBs). A reversible capacity of 1132 mAh g^(-1) was retained after 100 cycles at a rate of 100 mAg^(-1), which should be one of the best LIBs performances among metal organic frameworks and coordination polymers-based anode materials at such a rate. On the basis of the comprehensive structural and morphology characterizations including fourier transform infrared spectroscopy,~1 H NMR,^(13)C NMR, and scanning electron microscopy, we demonstrated that the great electrochemical performance of the as-synthesized Co-BDCN coordination polymer can be attributed to the synergistic effect of metal centers and organic ligands, as well as the stability of the nanowire morphology during cycling. 展开更多
关键词 NANOWIRE Coordination polymer lithiumion battery ANODE Ultra-high capacity
下载PDF
Machine learning in energy storage materials 被引量:1
3
作者 Zhong-Hui Shen Han-Xing Liu +3 位作者 Yang Shen Jia-Mian Hu Long-Qing Chen Ce-Wen Nan 《Interdisciplinary Materials》 2022年第2期175-195,共21页
With its extremely strong capability of data analysis,machine learning has shown versatile potential in the revolution of the materials research paradigm.Here,taking dielectric capacitors and lithium‐ion batteries as... With its extremely strong capability of data analysis,machine learning has shown versatile potential in the revolution of the materials research paradigm.Here,taking dielectric capacitors and lithium‐ion batteries as two representa-tive examples,we review substantial advances of machine learning in the research and development of energy storage materials.First,a thorough discussion of the machine learning framework in materials science is presented.Then,we summarize the applications of machine learning from three aspects,including discovering and designing novel materials,enriching theoretical simulations,and assisting experimentation and characterization.Finally,a brief outlook is highlighted to spark more insights on the innovative implementation of machine learning in materials science. 展开更多
关键词 dielectric capacitor energy storage lithiumion battery machine learning
原文传递
Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials
4
作者 Wenming Li Weijian Tang +4 位作者 Maoqin Qiu Qiuge Zhang Muhammad Irfan Zeheng Yang Weixin Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第6期988-996,共9页
Nickel(Ni)-rich layered materials have attracted considerable interests as promising cathode materials for lithium ion batteries(LIBs)owing to their higher capacities and lower cost.Nevertheless,Mn-rich cathode materi... Nickel(Ni)-rich layered materials have attracted considerable interests as promising cathode materials for lithium ion batteries(LIBs)owing to their higher capacities and lower cost.Nevertheless,Mn-rich cathode materials usually suffer from poor cyclability caused by the unavoidable side-reactions between Ni^4+ions on the surface a nd electrolytes.The design of gradient concentration(GC)particles with Ni-rich inside and Mn-rich outside is proved to be an efficient way to address the issue.Herein,a series of LiNi0.6Co0.2Mn0.2O2(LNCM 622)materials with different GCs(the atomic ratio of Ni/Mn decreasing from the core to the outer layer)have been successfully synthesized via rationally designed co-precipitation process.Experimental results demonstrate that the GC of LNCM 622 materials plays an important role in their microstructure and electrochemical properties.The as-prepared GC3.5 cathode material with optimal GC can provide a shorter pathway for lithium-ion diffusion and stabilize the near-surface region,and finally achieve excellent electrochemical performances,delivering a discharge capacity over 176 mAh·g^-1 at 0.2 C rate and exhibiting capacity retention up to 94%after 100 cycles at 1 C.T h e rationally-designed co-precipitation process for fabricating the Ni-rich layered cathode materials with gradient composition lays a solid foundation for the preparation of high-performance cathode materials for LIBs. 展开更多
关键词 gradient concentration Ni-rich LiNi0.6Co0.2Mn0.2O2 electrochemical performance lithiumion battery
原文传递
锂离子电池BaLi_(2-x)Na_xTi_6O_(14)(0≤x≤2)负极材料的结构与电化学性能(英文)
5
作者 陶伟 徐茂莲 +2 位作者 朱彦荣 张千玉 伊廷锋 《Science China Materials》 SCIE EI CSCD 2017年第8期728-738,共11页
本文采用简单的高温固相法制备了BaLi_(2-x)NaxTi_6O_(14)(0≤x≤2)系列化合物作为储锂材料.XRD Rietveld精确表明Bragg点与Ba Li2Ti6O14相对应,由于Na+的半径比Li+的半径大55%,因此Na+掺杂的BaLi_2-xNaxTi_6O_(14)化合物具有比纯Ba Li2... 本文采用简单的高温固相法制备了BaLi_(2-x)NaxTi_6O_(14)(0≤x≤2)系列化合物作为储锂材料.XRD Rietveld精确表明Bragg点与Ba Li2Ti6O14相对应,由于Na+的半径比Li+的半径大55%,因此Na+掺杂的BaLi_2-xNaxTi_6O_(14)化合物具有比纯Ba Li2Ti6O1 4更大的晶胞体积.SEM测试结果表明,BaLi_2-xNaxTi_6O_(14)(x=0,0.5,1)粉末呈相似的不规则的颗粒状,粒径大约在500到1000 nm之间.但是,BaLi_2-xNaxTi_6O_(14)(x=1.5,2)展示了棒状的形貌.循环伏安结果表明,钝化膜主要在第一次嵌锂过程时形成,BaLi_(2-x)NaxTi_6O_(14)(0≤x≤2)表面的SEI膜主要在第一次循环且电位在0.7 V以下时形成.相对于其他样品,Ba Li0.5Na1.5Ti6O14具有较高的可逆容量,较好的倍率性能和优异的循环性能.电流密度为50、100、150、200、250和300mAg-1时,Ba Li0.5Na1.5Ti6O14的脱锂容量分别为162.1、158.1、156.7、152.2、147.3和142 mAhg(-1).有趣的是,Ba Na2Ti6O14作为阳极也展示了可接受的电化学性能.Ba Li0.5Na1.5Ti6O14所提高的电化学性能可以归因于其最小的极化和最高的锂离子扩散系数.因具有优异的循环性能、简单的合成路线和宽的放电区间,Ba Li0.5Na1.5Ti6O14可作为锂离子电池负极候选材料. 展开更多
关键词 Ba Li2Ti6O14 Ba Na2Ti6O14 anode material lithiumion battery delithiation capacity
原文传递
Depositing natural stibnite on 3D TiO_(2) nanotube array networks as high-performance thin-film anode for lithium-ion batteries 被引量:1
6
作者 Juan Yu Bi-Cheng Meng +4 位作者 Le-Jie Wang Qi Wang Wen-Long Huang Xu-Yang Wang Zhao Fang 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3215-3221,共7页
Three-dimensional(3D) thin-film electrodes are promising solution to the volume change of active materials in lithium-ion batteries.As a conductive current collector,the 3D TiO_(2) nanotube array networks(TNAs) have a... Three-dimensional(3D) thin-film electrodes are promising solution to the volume change of active materials in lithium-ion batteries.As a conductive current collector,the 3D TiO_(2) nanotube array networks(TNAs) have a one-dimensional stable electronic conductive path and increase the adhesion between the current collector and raw material,thereby improving the cycle stability of active materials.In this study,a novel 3D-TNAs@Sb_(2)S_(3) anode was fabricated by directly depositing natural stibnite onto3D TNAs.The adhesion of Sb_(2)S_(3) particles to the substrate was enhanced due to the large surface area provided by 3D-TNAs.Moreover,the porous layered structure composed of Sb_(2)S_(3) nanoparticles relieved the stress generated during lithiation and adapted to the volume change of Sb_(2)S_(3) during cycling.Therefore,the resulting composite anode exhibits high cycle and rate performance,reaching0.36 mAh·cm^(-2) after 80 cycles at the galvanostatic rate of1 mA·cm^(-2),with high coulombic efficiency of 98%. 展开更多
关键词 TiO_(2)nanotube array Natural stibnite lithiumion batteries ANODE
原文传递
金属有机框架衍生Ni2P嵌入氮掺杂碳多孔微球在锂离子电池中的应用
7
作者 陶石 崔培昕 +5 位作者 丛姗 陈双明 吴大军 钱斌 宋礼 Augusto Marcelli 《Science China Materials》 SCIE EI CSCD 2020年第9期1672-1682,共11页
过渡金属磷化物(TMPs)/碳复合材料的设计合成在储能领域逐渐引起了研究人员的关注.本研究以镍基-金属有机骨架材料为模板将磷化镍(Ni2P)纳米颗粒嵌入到氮掺杂碳(Ni2P/NC)多孔微球中.全面碳封装结构使得Ni2P纳米颗粒之间的接触更加紧密,... 过渡金属磷化物(TMPs)/碳复合材料的设计合成在储能领域逐渐引起了研究人员的关注.本研究以镍基-金属有机骨架材料为模板将磷化镍(Ni2P)纳米颗粒嵌入到氮掺杂碳(Ni2P/NC)多孔微球中.全面碳封装结构使得Ni2P纳米颗粒之间的接触更加紧密,大大提高了结构的完整性和导电性,使得储锂性能更加优异.即使在电流密度为3.0Ag^-1的情况下,可逆比容量仍可达286.4mAhg^-1.在0.5Ag^-1电流密度下连续充放电循环800次后,仍可获得450.4mAhg^-1的可逆比容量.本研究证实了Ni2P/NC微观结构的可逆性.此外,基于LiNi1/3Co1/3Mn1/3O2||Ni2P/NC的全电池展示了良好的倍率性能和循环寿命.本研究为寻找应用于储能装置的先进电极材料提供了有力而深入的理论依据. 展开更多
关键词 nickel phosphide metal-organic frameworks X-ray absorption spectroscopy pseudocapacitance behavior lithiumion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部