期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lithology Classification Based on Set-Valued Identification Method 被引量:1
1
作者 LI Jing WU Lifang +4 位作者 LU Wenjun WANG Ting KANG Yu FENG Deyong ZHOU Hansheng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第5期1637-1652,共16页
Lithology classification using well logs plays a key role in reservoir exploration.This paper studies the problem of lithology identification based on the set-valued method(SV),which uses the SV model to establish the... Lithology classification using well logs plays a key role in reservoir exploration.This paper studies the problem of lithology identification based on the set-valued method(SV),which uses the SV model to establish the relation between logging data and lithologic types at a certain depth point.In particular,the system model is built on the assumption that the noise between logging data and lithologic types is normally distributed,and then the system parameters are estimated by SV method based on the existing identification criteria.The logging data of Shengli Oilfield in Jiyang Depression are used to verify the effectiveness of SV method.The results indicate that the SV model classifies lithology more accurately than the Logistic Regression model(LR)and more stably than uninterpretable models on imbalanced dataset.Specifically,the Macro-F1 of the SV models(i.e.,SV(3),SV(5),and SV(7))are higher than 85%,where the sandstone samples account for only 22%.In addition,the SV(7)lithology identification system achieves the best stability,which is of great practical significance to reservoir exploration. 展开更多
关键词 DT lithology classification LR RF set-valued model SVM
原文传递
Clastic compaction unit classification based on clay content and integrated compaction recovery using well and seismic data 被引量:1
2
作者 Zhong Hong Ming-Jun Su +1 位作者 Hua-Qing Liu Gai Gao 《Petroleum Science》 SCIE CAS CSCD 2016年第4期685-697,共13页
Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as ... Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology. 展开更多
关键词 Compaction recovery Porosity-clay contentdepth compaction model classification of lithological compaction unit Well and seismic data integrated compaction recovery technology
下载PDF
Updated Lithological Map in the Forest Zone of the Centre, South and East Regions of Cameroon Using Multilayer Perceptron Neural Network and Landsat Images
3
作者 Charlie Gael Atangana Otele Mathias Akong Onabid +1 位作者 Patrick Stephane Assembe Marcellin Nkenlifack 《Journal of Geoscience and Environment Protection》 2021年第6期120-134,共15页
The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not mu... The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3). 展开更多
关键词 Neural Network Multilayer Perceptron Principal Components Analysis Independent Components Analysis Lithological classification Geological Mapping
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部