BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in ...BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in the development of MAFLD,with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma.Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers.However,imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints.Consequently,it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis.AIM To investigate the predictive value of angiopoietin-like protein 8(ANGPTL8)in MAFLD and its progression.METHODS We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department,Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology,during September 2021-July 2022.Using abdominal ultrasonography and MAFLD diagnostic criteria,among the 160 patients,80 patients(50%)were diagnosed with MAFLD.The MAFLD group was divided into the liver fibrosis group(n=23)and non-liver fibrosis group(n=57)by using a cut-off fibrosis-4 index≥1.45.Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression.Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression.RESULTS Compared with non-MAFLD patients,MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose(TyG)index(both P<0.05).Serum ANGPTL8(r=0.576,P<0.001)and TyG index(r=0.473,P<0.001)were positively correlated with MAFLD.Serum ANGPTL8 was a risk factor for MAFLD[odds ratio(OR):1.123,95%confidence interval(CI):1.066-1.184,P<0.001).Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD[area under the curve(AUC):0.832 and 0.886,respectively;both P<0.05].Compared with MAFLD patients without fibrosis,those with fibrosis had higher serum ANGPTL8 and TyG index(both P<0.05),and both parameters were positively correlated with MAFLD-associated fibrosis.Elevated serum ANGPTL8(OR:1.093,95%CI:1.044-1.144,P<0.001)and TyG index(OR:2.383,95%CI:1.199-4.736,P<0.013)were risk factors for MAFLD-associated fibrosis.Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD-associated fibrosis(AUC:0.812 and 0.835,respectively;both P<0.05).CONCLUSION The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD.They can serve as predictors for the risk of MAFLD and liver fibrosis,with the ANGPTL8+TyG index potentially exhibiting even higher predictive value.展开更多
血管生成素样蛋白8(angiopoietin-like protein 8,ANGPTL8)是最新发现的ANGPTLs家族成员,是一种与脂类代谢相关的分泌性蛋白因子。作者综述了ANGPTL8基因的结构、定位、表达调控、功能等方面的研究进展,对该基因作为治疗脂类相关疾病的...血管生成素样蛋白8(angiopoietin-like protein 8,ANGPTL8)是最新发现的ANGPTLs家族成员,是一种与脂类代谢相关的分泌性蛋白因子。作者综述了ANGPTL8基因的结构、定位、表达调控、功能等方面的研究进展,对该基因作为治疗脂类相关疾病的靶基因的前景做了展望。展开更多
Tcells are an important component of adaptive immunity and protect the host from infectious diseases and cancers.However,uncontrolled T cell immunity may cause autoimmune disorders.In both situations,antigen-specific ...Tcells are an important component of adaptive immunity and protect the host from infectious diseases and cancers.However,uncontrolled T cell immunity may cause autoimmune disorders.In both situations,antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens.Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion.Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets.The realm of immunometabolism research is undergoing swift advancements.Encapsulating all the recent progress within this concise review in not possible.Instead,our objective is to provide a succinct introduction to this swiftly progressing research,concentrating on the metabolic intricacies of three pivotal nutrient classes—lipids,glucose,and amino acids—in T cells.We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells.Moreover,we delve into the prospect of“editing”metabolic pathways within T cells using pharmacological or genetic approaches,with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.展开更多
基金Supported by Youth Talents Project of Joint Fund of Hubei Health Commission,No.WJ2019H170and Xiaogan Natural Science Project,No.XGKJ2020010033。
文摘BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is rapidly increasing,currently affecting approximately 25%of the global population.Liver fibrosis represents a crucial stage in the development of MAFLD,with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma.Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers.However,imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints.Consequently,it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis.AIM To investigate the predictive value of angiopoietin-like protein 8(ANGPTL8)in MAFLD and its progression.METHODS We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department,Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology,during September 2021-July 2022.Using abdominal ultrasonography and MAFLD diagnostic criteria,among the 160 patients,80 patients(50%)were diagnosed with MAFLD.The MAFLD group was divided into the liver fibrosis group(n=23)and non-liver fibrosis group(n=57)by using a cut-off fibrosis-4 index≥1.45.Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression.Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression.RESULTS Compared with non-MAFLD patients,MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose(TyG)index(both P<0.05).Serum ANGPTL8(r=0.576,P<0.001)and TyG index(r=0.473,P<0.001)were positively correlated with MAFLD.Serum ANGPTL8 was a risk factor for MAFLD[odds ratio(OR):1.123,95%confidence interval(CI):1.066-1.184,P<0.001).Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD[area under the curve(AUC):0.832 and 0.886,respectively;both P<0.05].Compared with MAFLD patients without fibrosis,those with fibrosis had higher serum ANGPTL8 and TyG index(both P<0.05),and both parameters were positively correlated with MAFLD-associated fibrosis.Elevated serum ANGPTL8(OR:1.093,95%CI:1.044-1.144,P<0.001)and TyG index(OR:2.383,95%CI:1.199-4.736,P<0.013)were risk factors for MAFLD-associated fibrosis.Serum ANGPTL8 and ANGPTL8+TyG index predicted MAFLD-associated fibrosis(AUC:0.812 and 0.835,respectively;both P<0.05).CONCLUSION The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD.They can serve as predictors for the risk of MAFLD and liver fibrosis,with the ANGPTL8+TyG index potentially exhibiting even higher predictive value.
文摘Tcells are an important component of adaptive immunity and protect the host from infectious diseases and cancers.However,uncontrolled T cell immunity may cause autoimmune disorders.In both situations,antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens.Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion.Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets.The realm of immunometabolism research is undergoing swift advancements.Encapsulating all the recent progress within this concise review in not possible.Instead,our objective is to provide a succinct introduction to this swiftly progressing research,concentrating on the metabolic intricacies of three pivotal nutrient classes—lipids,glucose,and amino acids—in T cells.We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells.Moreover,we delve into the prospect of“editing”metabolic pathways within T cells using pharmacological or genetic approaches,with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.