期刊文献+
共找到9,465篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal guidance strategy for flexible load based on hybrid direct load control and time of use 被引量:1
1
作者 Siyang Liu Yuan Gao +2 位作者 Hejun Yang Xinghua Xie Yinghao Ma 《Global Energy Interconnection》 EI CSCD 2023年第3期297-307,共11页
The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Opti... The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Optimal guidance mechanism of the flexible load based on strategies of direct load control and time-of-use.First,this study proposes a period partitioning model,which is based on a moving boundary technique with constraint factors,and the Dunn Validity Index(DVI)is used as the objective to solve the period partitioning.Second,a control strategy for the curtailable flexible load is investigated,and a TOU strategy is utilized for further modifying load curve.Third,a price demand response strategy for adjusting transferable load is proposed in this paper.Finally,through the case study analysis of typical daily flexible load curve,the efficiency and correctness of the proposed method and model are validated and proved. 展开更多
关键词 Flexible load Optimal demand response strategy Time of use Period partitioning Direct load control
下载PDF
A Multi-mode Electronic Load Sensing Control Scheme with Power Limitation and Pressure Cut-off for Mobile Machinery
2
作者 Min Cheng Bolin Sun +1 位作者 Ruqi Ding Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期157-170,共14页
In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ... In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions. 展开更多
关键词 Hydraulic control load sensing MULTI-MODE Power limitation Mobile machinery
下载PDF
Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid
3
作者 Manish Kumar Nitai Pal 《Computers, Materials & Continua》 SCIE EI 2023年第3期4785-4799,共15页
Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consump... Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable,cheap,and easily available sources of energy.Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions.But the integration of distributed energy sources and increase in electric demand enhance instability in the grid.Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness and power quality of the grid.Electrical load forecasting in advance on the basic historical data modelling plays a crucial role in peak electrical demand control,reinforcement of the grid demand,and generation balancing with cost reduction.But accurate forecasting of electrical data is a very challenging task due to the nonstationary and nonlinearly nature of the data.Machine learning and artificial intelligence have recognized more accurate and reliable load forecastingmethods based on historical load data.The purpose of this study is to model the electrical load of Jajpur,Orissa Grid for forecasting of load using regression type machine learning algorithms Gaussian process regression(GPR).The historical electrical data and whether data of Jajpur is taken for modelling and simulation and the data is decided in such a way that the model will be considered to learn the connection among past,current,and future dependent variables,factors,and the relationship among data.Based on this modelling of data the network will be able to forecast the peak load of the electric grid one day ahead.The study is very helpful in grid stability and peak load control management. 展开更多
关键词 Artificial intelligence electric load forecasting machine learning peak-load control renewable energy smart grids
下载PDF
Finite-time economic model predictive control for optimal load dispatch and frequency regulation in interconnected power systems
4
作者 Yubin Jia Tengjun Zuo +3 位作者 Yaran Li Wenjun Bi Lei Xue Chaojie Li 《Global Energy Interconnection》 EI CSCD 2023年第3期355-362,共8页
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys... This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm. 展开更多
关键词 Economic model predictive control Finite-time convergence Optimal load dispatch Frequency stability
下载PDF
Research on AC Electronic Load with Energy Recovery Based on Finite Control Set Model Predictive Control
5
作者 Jian Wang Jianzhong Zhu +2 位作者 Xueyu Dong Chenxi Liu Jiazheng Shen 《Energy Engineering》 EI 2023年第4期965-984,共20页
Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor d... Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results. 展开更多
关键词 AC electronic load energy recovery finite control set model predictive control computation burden
下载PDF
Frequency Control Approach and Load Forecasting Assessment for Wind Systems
6
作者 K.Sukanya P.Vijayakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期971-982,共12页
Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is ... Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach. 展开更多
关键词 load forecasting wind power prediction fuzzy logic controller ANN SVM hybrid power systems
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
7
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs 被引量:16
8
作者 Yi Zhang Xiangjie Liu Bin Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期125-135,共11页
Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper prese... Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control(DMPC) based on coordination scheme.The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints(GRCs), load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed–loop performance, and computational burden with the physical constraints. 展开更多
关键词 Distributed model predictive control(DMPC) doubly fed induction generator(DFIG) load frequency control(LFC)
下载PDF
Robust H_∞ Load Frequency Control of Multi-area Power System With Time Delay:A Sliding Mode Control Approach 被引量:6
9
作者 Yonghui Sun Yingxuan Wang +2 位作者 Zhinong Wei Guoqiang Sun Xiaopeng Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期610-617,共8页
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re... This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results. 展开更多
关键词 load frequency control(LFC) multi-area power system robust control sliding mode control(SMC) time delay
下载PDF
Resilient Fixed-Order Distributed Dynamic Output Feedback Load Frequency Control Design for Interconnected Multi-Area Power Systems 被引量:4
10
作者 Ali Azarbahram Amir Amini Mahdi Sojoodi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第5期1139-1151,共13页
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont... The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system. 展开更多
关键词 Dynamic OUTPUT FEEDBACK control interconnected multi-area POWER systems load frequency control linear MATRIX INEQUALITIES POWER system control
下载PDF
Study on semi-active control of mega-sub controlled structure by MR damper subject to random wind loads 被引量:7
11
作者 Qin Xiangjun Zhang Xun'an Sheldon Cherry 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期285-294,共10页
The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing ... The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study. 展开更多
关键词 mega-sub controlled structure (MSCS) semi-active control magnetorheological damper relative stiffness ratio relative mass ratio additional column stiffness ratio wind load
下载PDF
Variants of Secondary Control with Power Recovery for Loading Hydraulic Driving Device 被引量:4
12
作者 LI Wanguo FU Yongling +1 位作者 CHEN Juan QI Xiaoye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期618-633,共16页
Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and thos... Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency. 展开更多
关键词 load simulator variants of secondary control power recovery efficiency energy regeneration hydraulic driving device SIMULATION A
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
13
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
COMPUTER CONTROLLED METHOD FOR MEASUREMENT OFSURFACE CRACK LENGTH ON PLATE SUBJECTEDTO FATIGUE LOADING 被引量:1
14
作者 Chen Feng Xu Jicheng (Opening Laboratory of Mechanics, Central South University of Technology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1997年第2期141-143,共3页
The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high prec... The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high precision with the maximum error percentage being less than 6%, and it can be easily used to estimate or monitor the surface crack length under fatigue loading both in laboratory and in engineering. It is also quite meanful for nondamage detecting. 展开更多
关键词 COMPUTER control CALIBRATION FATIGUE loadING nondamage detecting.
下载PDF
Multi-objective optimization for voltage and frequency control of smart grids based on controllable loads 被引量:2
15
作者 Yaxin Wang Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 CAS CSCD 2021年第2期136-144,共9页
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi... The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB. 展开更多
关键词 Multi-objective optimization Voltage control Frequency control Power flow controllable loads Game theory
下载PDF
Decentralized Resilient H_∞Load Frequency Control for Cyber-Physical Power Systems Under DoS Attacks 被引量:2
16
作者 Xin Zhao Suli Zou Zhongjing Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第11期1737-1751,共15页
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte... This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks. 展开更多
关键词 Cyber-physical power systems(CPPSs) denial-of-service(DoS)attacks load frequency control(LFC) sampled-data control
下载PDF
ELECTRO-HYDRAULIC COMPOUND CONTROL METHOD AND CHARACTERISTIC OF CONTROL FOR TENSION SYSTEM WITH HIGH INERTIA LOADS 被引量:2
17
作者 ZHONG Tianyu WANG Qingfeng +1 位作者 LI Yanmin GONG Fangyou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期391-395,共5页
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which... Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory. 展开更多
关键词 High inertia loads Tension control system Compound control strategy
下载PDF
Variable Parameter Nonlinear Control for Maximum Power Point Tracking Considering Mitigation of Drive-train Load 被引量:2
18
作者 Zaiyu Chen Minghui Yin +3 位作者 Lianjun Zhou Yaping Xia Jiankun Liu Yun Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期252-259,共8页
Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking... Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking(MPPT) controller.Moreover, a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue. However, for the existing control strategies based on nonlinear model of wind turbines, the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft. Hence, in this paper, a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously. Then,simulations on FAST(Fatigue, Aerodynamics, Structures, and Turbulence) code and experiments on the wind turbine simulator(WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load. 展开更多
关键词 Drive-train load maximum power point tracking(MPPT) nonlinear control wind turbines(WT)
下载PDF
A New Design of Robust H&infin;Load-Frequency Controller for Optimal Coordination of Energy Generation in Power System Stability Using LMI Approach 被引量:1
19
作者 Chamni Jaipradidtham Chatchai U-thaiwasin 《Journal of Power and Energy Engineering》 2015年第4期146-154,共9页
This paper presents the problem of robust H&infin;?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency ... This paper presents the problem of robust H&infin;?load frequency controller design and robust H¥ based approach called advanced frequency control (AFC). The objective is to split the task of balancing frequency deviations introduced by renewable energy source (RES) and load variations according to the capabilities of storage and generators. The problem we address is to design an output feedback controller such that, all admissible parameter uncertainties, the closed-loop system satisfies not only the prespecified H&infin;? norm constraint on the transfer function from the disturbance input to the system output. The conventional generators mainly balance the low-frequency components and load variations while the energy storage devices compensate the high- frequency components. In order to enable the controller design for storage devices located at buses with no generators, a model for the frequency at such a bus is developed. Then, AEC controllers are synthesized through decentralized static output feedback to reduce the complexity. The conditions for the existence of desired controllers are derived in terms of a linear matrix inequality (LMI) algorithm is improved. From the simulation results, the system responses with the proposed controller are the best transient responses. 展开更多
关键词 Optimal COORDINATION ROBUST H∞ controller load Frequency control LMI Approach
下载PDF
Precise Compound Control of Loading Force for Electric Load Simulator of Electric Power Steering Test Bench 被引量:1
20
作者 Changhua Dai Guoying Chen +1 位作者 Changfu Zong Buyang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期255-265,共11页
Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering... Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration. 展开更多
关键词 Electric load simulator Electric power steering Extra force Compound control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部