The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Opti...The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Optimal guidance mechanism of the flexible load based on strategies of direct load control and time-of-use.First,this study proposes a period partitioning model,which is based on a moving boundary technique with constraint factors,and the Dunn Validity Index(DVI)is used as the objective to solve the period partitioning.Second,a control strategy for the curtailable flexible load is investigated,and a TOU strategy is utilized for further modifying load curve.Third,a price demand response strategy for adjusting transferable load is proposed in this paper.Finally,through the case study analysis of typical daily flexible load curve,the efficiency and correctness of the proposed method and model are validated and proved.展开更多
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte...This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks.展开更多
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which...Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the syste...increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs.展开更多
This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of re...This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.展开更多
Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (s...Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique.展开更多
Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at pr...Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at predetermined values for the corresponding changes in load demand. In this paper, the two-area, hydrothermal deregulated power system is considered with Redox Flow Batteries (RFB) in both the areas. RFB is an energy storage device, which converts electrical energy into chemical energy, that is used to meet the sudden requirement of real power load and hence very effective in reducing the peak shoots. With conventional proportional-integral (PI) controller, it is difficult to get the optimum solution. Hence, intelligent techniques are used to tune the PI controller of the LFC to improve the dynamic response. In the family of intelligent techniques, a recent nature inspired algorithm called the Flower Pollination Algorithm (FPA) gives the global minima solution. The optimal value of the controller is determined by minimizing the ISE. The results show that the proposed FPA tuned PI controller improves the dynamic response of the deregulated system faster than the PI controller for different cases. The simulation is implemented in MATLAB environment.展开更多
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ...This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.展开更多
An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID al...An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.展开更多
The design idea of tracking-differentiator and the nonlinear PID controllerare introduced, the applicable algorithm and its real result for distributed aerodynamicsloading control system are discussed, and the constru...The design idea of tracking-differentiator and the nonlinear PID controllerare introduced, the applicable algorithm and its real result for distributed aerodynamicsloading control system are discussed, and the construction of the test & contro1 system arealso presented. The application shows that the nonlinear PID algorithm has the advan-tages of high reliability, short run time and strong stability.展开更多
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi...In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink.展开更多
Renewable energy sources(RESs)are rapidly devel-oping and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems.The load damping factor D charact...Renewable energy sources(RESs)are rapidly devel-oping and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems.The load damping factor D characterizes the active power of load that changes with power system frequency,which is an important factor influencing the frequency response.However,the value of D is small,resulting in the limitation in frequency regulation of the power system.This paper proposes a parallel-type load damping factor controller to enhance load damping factor by utilizing static var generators(SVGs)in substations.Additionally,it discusses the configuration method for the relevant parameters of the controller,evaluates its frequen-cy regulation capability,investigates the impact of large-scale application of the controller on static and dynamic loads,and conducts a comprehensive evaluation of the impact of the damping factor control process on the voltage stability of the main grid.The large-scale application of the proposed controller can significantly improve the frequency regulation capability,and almost have no influence on the working status of the load.It can also significantly improve the dynamic performance of system frequency.The proposed controller can provide technical support for the frequency regulation of new power systems with high proportion of RESs.展开更多
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb...This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme.展开更多
Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control ...Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conven...A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conventional Gilbert-type mixer which is based on RF current-commutating, the load impedance in this proposed mixer is controlled by the LO signal, and it has only two stacked transistors at each branch which is suitable for low voltage applications. The mixer was designed and fabricated in 0.18 tam CMOS process for 2.4 GHz ISM band applications. With an input of 2.44 GHz RF signal and 2.442 GHz LO signal, the measurement specifications of the proposed mixer are: the conversion gain (Gc) is 5.3 dB, the input-referred third-order intercept point (PIIP3) is 4.6 dBm, the input-referred 1 dB compression point (P1dB) is --7.4 dBm, and the single-sideband noise figure (NFSSB) is 21.7 dB.展开更多
基金supported by open fund of state key laboratory of operation and control of renewable energy&storage systems(China electric power research institute)(No.NYB51202201709).
文摘The time-of-use(TOU)strategy can effectively improve the energy consumption mode of customers,reduce the peak-valley difference of load curve,and optimize the allocation of energy resources.This study presents an Optimal guidance mechanism of the flexible load based on strategies of direct load control and time-of-use.First,this study proposes a period partitioning model,which is based on a moving boundary technique with constraint factors,and the Dunn Validity Index(DVI)is used as the objective to solve the period partitioning.Second,a control strategy for the curtailable flexible load is investigated,and a TOU strategy is utilized for further modifying load curve.Third,a price demand response strategy for adjusting transferable load is proposed in this paper.Finally,through the case study analysis of typical daily flexible load curve,the efficiency and correctness of the proposed method and model are validated and proved.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金supported by the National Natural Science Foundation(NNSF)of China(62003037,61873303)。
文摘This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks.
基金This project is supported by National Natural Science Foundation of China (No.50475105).
文摘Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
文摘increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs.
基金supported in part by the National Natural Science Foundation of China(61673161)the Natural Science Foundation of Jiangsu Province of China(BK20161510)+2 种基金the Fundamental Research Funds for the Central Universities of China(2017B13914)the 111 Project(B14022)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper is devoted to investigate the robust H∞sliding mode load frequency control(SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies,a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities(LMIs). Finally,a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.
文摘Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique.
文摘Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at predetermined values for the corresponding changes in load demand. In this paper, the two-area, hydrothermal deregulated power system is considered with Redox Flow Batteries (RFB) in both the areas. RFB is an energy storage device, which converts electrical energy into chemical energy, that is used to meet the sudden requirement of real power load and hence very effective in reducing the peak shoots. With conventional proportional-integral (PI) controller, it is difficult to get the optimum solution. Hence, intelligent techniques are used to tune the PI controller of the LFC to improve the dynamic response. In the family of intelligent techniques, a recent nature inspired algorithm called the Flower Pollination Algorithm (FPA) gives the global minima solution. The optimal value of the controller is determined by minimizing the ISE. The results show that the proposed FPA tuned PI controller improves the dynamic response of the deregulated system faster than the PI controller for different cases. The simulation is implemented in MATLAB environment.
文摘This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.
文摘An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.
文摘The design idea of tracking-differentiator and the nonlinear PID controllerare introduced, the applicable algorithm and its real result for distributed aerodynamicsloading control system are discussed, and the construction of the test & contro1 system arealso presented. The application shows that the nonlinear PID algorithm has the advan-tages of high reliability, short run time and strong stability.
基金supported in part by the National Natural Science Foundation of China(No.61973078)in part by the Natural Science Foundation of Jiangsu Province of China(No.BK20231416)in part by the Zhishan Youth Scholar Program from Southeast University(No.2242022R40042)。
文摘In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink.
基金funded by the State Grid Corporation of China(No.SGJSSZ00KJS2310831)"Research and application of key technologies for load flexibility resource mining and power grid regulation driven by industrial Internet".
文摘Renewable energy sources(RESs)are rapidly devel-oping and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems.The load damping factor D characterizes the active power of load that changes with power system frequency,which is an important factor influencing the frequency response.However,the value of D is small,resulting in the limitation in frequency regulation of the power system.This paper proposes a parallel-type load damping factor controller to enhance load damping factor by utilizing static var generators(SVGs)in substations.Additionally,it discusses the configuration method for the relevant parameters of the controller,evaluates its frequen-cy regulation capability,investigates the impact of large-scale application of the controller on static and dynamic loads,and conducts a comprehensive evaluation of the impact of the damping factor control process on the voltage stability of the main grid.The large-scale application of the proposed controller can significantly improve the frequency regulation capability,and almost have no influence on the working status of the load.It can also significantly improve the dynamic performance of system frequency.The proposed controller can provide technical support for the frequency regulation of new power systems with high proportion of RESs.
基金supported by National Natural Science Foundation of China(60904008,61273336)the Fundamental Research Funds for the Central Universities(2018MS025)the National Basic Research Program of China(973 Program)(B1320133020)
文摘This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme.
基金supported by Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No.U1406403)the Sea Area Use Fund of Jiangsu Province (Environmental Capacity for the Key Coast of Jiangsu Province)+1 种基金the National Natural Science Foundation of China (No.41340046)Modeling work was completed at the Computing Services Center,Ocean University of China
文摘Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
基金Project(61166004) supported by the National Natural Science Foundation of ChinaProject(09ZCGHHZ00200) supported by the International Scientific and Technological Cooperation Program of Science and Technology Plan of Tianjin,ChinaProject(UF10028Y)supported by the Doctoral Scientific Research Foundation for Guilin University of Electronic Technology,China
文摘A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conventional Gilbert-type mixer which is based on RF current-commutating, the load impedance in this proposed mixer is controlled by the LO signal, and it has only two stacked transistors at each branch which is suitable for low voltage applications. The mixer was designed and fabricated in 0.18 tam CMOS process for 2.4 GHz ISM band applications. With an input of 2.44 GHz RF signal and 2.442 GHz LO signal, the measurement specifications of the proposed mixer are: the conversion gain (Gc) is 5.3 dB, the input-referred third-order intercept point (PIIP3) is 4.6 dBm, the input-referred 1 dB compression point (P1dB) is --7.4 dBm, and the single-sideband noise figure (NFSSB) is 21.7 dB.