期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Prediction of Load-Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network
1
作者 YAN Jun LI Wen-bo +4 位作者 Murilo Augusto VAZ LU Hai-long ZHANG Heng-rui DU Hong-ze BU Yu-feng 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期42-52,共11页
The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t... The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease. 展开更多
关键词 flexible pipe CARCASS radial compression experiment loaddisplacement curves residual neural network
下载PDF
Determination of ultimate bearing capacity of uplift piles using intact and non-intact load−displacement curve 被引量:5
2
作者 WANG Qin-ke MAJian-lin +2 位作者 JI Yu-kun ZHANG Jian CHEN Wen-long 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期470-485,共16页
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ... Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles. 展开更多
关键词 loaddisplacement curve prediction model determination method of bearing capacity change rate of pullout stiffness
下载PDF
Elastic solutions for partially embedded single piles subjected to simultaneous axial and lateral loading 被引量:4
3
作者 张磊 龚晓南 俞建霖 《Journal of Central South University》 SCIE EI CAS 2014年第11期4330-4337,共8页
In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogene... In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones. 展开更多
关键词 pile-soil interaction simultaneous axial and lateral loads difference method elastic modulus displacement
下载PDF
Topology Optimization of Compliant Mechanisms with Geometrical Nonlinearities Using the Ground Structure Approach 被引量:7
4
作者 ZHAN Jinqing ZHANG Xianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期257-263,共7页
The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological... The majority of topology optimization of compliant mechanisms uses linear finite element models to find the structure responses.Because the displacements of compliant mechanisms are intrinsically large,the topological design can not provide quantitatively accurate result.Thus,topological design of these mechanisms considering geometrical nonlinearities is essential.A new methodology for geometrical nonlinear topology optimization of compliant mechanisms under displacement loading is presented.Frame elements are chosen to represent the design domain because they are capable of capturing the bending modes.Geometrically nonlinear structural response is obtained by using the co-rotational total Lagrange finite element formulation,and the equilibrium is solved by using the incremental scheme combined with Newton-Raphson iteration.The multi-objective function is developed by the minimum strain energy and maximum geometric advantage to design the mechanism which meets both stiffness and flexibility requirements, respectively.The adjoint method and the direct differentiation method are applied to obtain the sensitivities of the objective functions. The method of moving asymptotes(MMA) is employed as optimizer.The numerical example is simulated to show that the optimal mechanism based on geometrically nonlinear formulation not only has more flexibility and stiffness than that based on linear formulation,but also has better stress distribution than the one.It is necessary to design compliant mechanisms using geometrically nonlinear topology optimization.Compared with linear formulation,the formulation for geometrically nonlinear topology optimization of compliant mechanisms can give the compliant mechanism that has better mechanical performance.A new method is provided for topological design of large displacement compliant mechanisms. 展开更多
关键词 compliant mechanisms topology optimization geometrical nonlinearities the ground structure approach displacement loading
下载PDF
Numerical Simulation of Surface Acoustic Wave and Detection of Surface Crack in Steel 被引量:1
5
作者 林滨 张磊 +3 位作者 多伦雷.丹特 李艳宁 傅兴 胡小唐 《Transactions of Tianjin University》 EI CAS 2011年第4期254-258,共5页
The surface acoustic wave (SAW) propagating in a sample of steel is simulated by using finite element method (FEM). The waves are excited by a load function with propagation properties such as phase velocity dispe... The surface acoustic wave (SAW) propagating in a sample of steel is simulated by using finite element method (FEM). The waves are excited by a load function with propagation properties such as phase velocity disper- sion and wide bandwidth. A two-dimensional model consisting of surface defects loaded with a wideband 50--200 M Hz and short time 0.1 gs displacement function is investigated in the time and frequency domains. By transient dy- namic analysis, Fourier transform and dispersion calculation, snapshots of propagating wave and responses from sens- ing points are presented. It is indicated that this supervision approach is sensitive to the surface cracks and reflections. 展开更多
关键词 surface acoustic wave STEEL numerical simulation displacement load DEFECT
下载PDF
Investigation of Micro-mechanical Response of Asphalt Mixtures by a Three-dimensional Discrete Element Model 被引量:1
6
作者 侯曙光 ZHANG Dong +1 位作者 HUANG Xiaoming ZHAO Yongli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期338-343,共6页
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ... The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view. 展开更多
关键词 asphalt mixture discrete element method micro-mechanical response vehicle load contact force displacement
下载PDF
Double⁃Shear Experiments of Cold⁃Formed Steel Stud⁃to⁃Sheathing Connections at Elevated Temperatures
7
作者 Kun Liu Wei Chen +3 位作者 Jihong Ye Yuze Yang Jian Jiang Yafei Qin 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第6期44-62,共19页
The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds o... The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds of sheathings,namely,medium⁃and low⁃density calcium⁃silicate boards and oriented strand board,were selected for double⁃shear experiments on the mechanical properties of 253 screw connections at ambient and elevated temperatures.The effects of the shear direction,screw edge distance and the number of screws on the behavior of the connections were studied.The results showed that the shear direction and the screw edge distance more significantly influenced the peak deformation,while their impacts on the peak load varied with the type of sheathings.Compared with the single⁃screw connections,the peak loads of the specimens with double⁃screw connections obviously increased but did not double.Finally,a simplified load⁃displacement curve model of stud⁃to⁃sheathing connections at elevated temperature was generated first by establishing the prediction formula for characteristic parameters,such as the peak load,the peak deformation and the elastic stiffness,and then by considering whether the curves corresponded to stiffness increase phenomena.The present investigation provides basic data for future studies on the numerical modeling of CFS structures under fire conditions. 展开更多
关键词 cold⁃formed steel structures stud⁃to⁃sheathing screw connections double⁃shear experiments elevated temperature loaddisplacement model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部