The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t...The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
基金financially supported by the National Key R&D Program of China (2021YFA1003501)the National Natural Science Foundation of China (No.U1906233,11732004)the Fundamental Research Funds for the Central Universities (DUT20ZD213,DUT20LAB308)。
文摘The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.