A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrai...A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch.展开更多
The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving...The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.展开更多
Economic Load Dispatch (ELD) is a process of scheduling the required load demand among available generation units such that the fuel cost of operation is minimized. The ELD problem is formulated as a nonlinear constra...Economic Load Dispatch (ELD) is a process of scheduling the required load demand among available generation units such that the fuel cost of operation is minimized. The ELD problem is formulated as a nonlinear constrained optimization problem with both equality and inequality constraints. In this paper, two test systems of the ELD problems are solved by adopting the Cuckoo Search (CS) Algorithm. A comparison of obtained simulation results by using the CS is carried out against six other swarm intelligence algorithms: Particle Swarm Optimization, Shuffled Frog Leaping Algorithm, Bacterial Foraging Optimization, Artificial Bee Colony, Harmony Search and Firefly Algorithm. The effectiveness of each swarm intelligence algorithm is demonstrated on a test system comprising three-generators and other containing six-generators. Results denote superiority of the Cuckoo Search Algorithm and confirm its potential to solve the ELD problem.展开更多
Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the foss...Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.展开更多
This article presents an application of generalized pattern search (PS) algorithm to solve economic load dispatch (ELD) problems with convex and non-convex fuel cost objective functions. Main objective of ELI) is...This article presents an application of generalized pattern search (PS) algorithm to solve economic load dispatch (ELD) problems with convex and non-convex fuel cost objective functions. Main objective of ELI) is to determine the most economic generating dispatch required to satisfy the predicted load demands including line losses. Relaxing various equality and inequality constraints are considered. The unit operation minhnum/maximum constraints, effects of valve-point and line losses are considered for the practical applications. Several case studies were tested and verified, which indicate an improvement in total fuel cost savings. The robustness of the proposed PS method have been assessed and investigated through intensive comparisons with reported results in recent researches. The results are very encouraging and suggesting that PS may be very useful tool in solving power system ELD problems.展开更多
During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,...During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance.展开更多
基金Project (Nos. 60074040 and 6022506) supported by the NationalNatural Science Foundation of China
文摘A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2013CB036406)the National Natural Science Foundation of China(Grant No.51179044)the Research Innovation Program for College Graduates in Jiangsu Province of China(Grant No.CXZZ12-0242)
文摘The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.
基金Fundacao de Amparo a Pesquisa do Estado de Sao Paulo for the financial support(Process FAPESP No 2011/08108-0).
文摘Economic Load Dispatch (ELD) is a process of scheduling the required load demand among available generation units such that the fuel cost of operation is minimized. The ELD problem is formulated as a nonlinear constrained optimization problem with both equality and inequality constraints. In this paper, two test systems of the ELD problems are solved by adopting the Cuckoo Search (CS) Algorithm. A comparison of obtained simulation results by using the CS is carried out against six other swarm intelligence algorithms: Particle Swarm Optimization, Shuffled Frog Leaping Algorithm, Bacterial Foraging Optimization, Artificial Bee Colony, Harmony Search and Firefly Algorithm. The effectiveness of each swarm intelligence algorithm is demonstrated on a test system comprising three-generators and other containing six-generators. Results denote superiority of the Cuckoo Search Algorithm and confirm its potential to solve the ELD problem.
基金The authors are grateful to the Raytheon Chair for Systems Engineering for funding.
文摘Economic dispatch has a significant effect on optimal economical operation in the power systems in industrial revolution 4.0 in terms of considerable savings in revenue.Various non-linearity are added to make the fossil fuel-based power systems more practical.In order to achieve an accurate economical schedule,valve point loading effect,ramp rate constraints,and prohibited operating zones are being considered for realistic scenarios.In this paper,an improved,and modified version of conventional particle swarm optimization(PSO),called Oscillatory PSO(OPSO),is devised to provide a cheaper schedule with optimum cost.The conventional PSO is improved by deriving a mechanism enabling the particle towards the trajectories of oscillatory motion to acquire the entire search space.A set of differential equations is implemented to expose the condition for trajectory motion in oscillation.Using adaptive inertia weights,this OPSO method provides an optimized cost of generation as compared to the conventional particle swarm optimization and other new meta-heuristic approaches.
文摘This article presents an application of generalized pattern search (PS) algorithm to solve economic load dispatch (ELD) problems with convex and non-convex fuel cost objective functions. Main objective of ELI) is to determine the most economic generating dispatch required to satisfy the predicted load demands including line losses. Relaxing various equality and inequality constraints are considered. The unit operation minhnum/maximum constraints, effects of valve-point and line losses are considered for the practical applications. Several case studies were tested and verified, which indicate an improvement in total fuel cost savings. The robustness of the proposed PS method have been assessed and investigated through intensive comparisons with reported results in recent researches. The results are very encouraging and suggesting that PS may be very useful tool in solving power system ELD problems.
文摘During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance.