A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to c...A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.展开更多
针对电力系统不对称负荷日益多样性的状况,将瞬时无功功率理论应用于提高功率因数和补偿三相不平衡的静止无功功率补偿装置(Static Var Compensator)控制之中,提出了一种基于新算法的SVC补偿控制方法。该算法以对称分量法为理论支撑,通...针对电力系统不对称负荷日益多样性的状况,将瞬时无功功率理论应用于提高功率因数和补偿三相不平衡的静止无功功率补偿装置(Static Var Compensator)控制之中,提出了一种基于新算法的SVC补偿控制方法。该算法以对称分量法为理论支撑,通过对负荷电流进行基波有功分量和无功分量的解耦,利用分离出的无功电流计算理想补偿导纳,简化了传统的不对称补偿算法。采用Matlab/Simulink对所提出的控制算法进行仿真建模,建立对晶闸管相控电抗器(TCR)并联电容型SVC的控制,仿真结果证明了所提方法的正确性和可行性。展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB026200)the National Natural Science Foundation of China(Grant No.50878048)
文摘A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.
文摘针对电力系统不对称负荷日益多样性的状况,将瞬时无功功率理论应用于提高功率因数和补偿三相不平衡的静止无功功率补偿装置(Static Var Compensator)控制之中,提出了一种基于新算法的SVC补偿控制方法。该算法以对称分量法为理论支撑,通过对负荷电流进行基波有功分量和无功分量的解耦,利用分离出的无功电流计算理想补偿导纳,简化了传统的不对称补偿算法。采用Matlab/Simulink对所提出的控制算法进行仿真建模,建立对晶闸管相控电抗器(TCR)并联电容型SVC的控制,仿真结果证明了所提方法的正确性和可行性。