In this paper, we explored a load-balancing algorithm in a cluster file system contains two levels of metadata-server, primary-level server quickly distributestasks to second-level servers depending on the closest loa...In this paper, we explored a load-balancing algorithm in a cluster file system contains two levels of metadata-server, primary-level server quickly distributestasks to second-level servers depending on the closest load-balancing information. At the same time, we explored a method which accurately reflect I/O traffic and storage of storage-node: computing the heat-value of file, according to which we realized a more logical storage allocation. According to the experiment result, we conclude that this new algorithm shortens the executing time of tasks and improves the system performance compared with other load algorithm.展开更多
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating ci...The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.展开更多
基金Supported by the Industrialized Foundation ofHebei Province(020501) the Natural Science Foundation of HebeiUniversity(2005Q04)
文摘In this paper, we explored a load-balancing algorithm in a cluster file system contains two levels of metadata-server, primary-level server quickly distributestasks to second-level servers depending on the closest load-balancing information. At the same time, we explored a method which accurately reflect I/O traffic and storage of storage-node: computing the heat-value of file, according to which we realized a more logical storage allocation. According to the experiment result, we conclude that this new algorithm shortens the executing time of tasks and improves the system performance compared with other load algorithm.
基金Supported by National Natural Science Foundation of China(Grant No11472239)Hebei Provincial Natural Science Foundation of China(Grant No.A2015203023)Key Project of Science and Technology Research of Higher Education of Hebei Province of China(Grant No.ZD20131055)
文摘The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.