Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.I...Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.In the literature, very little or no effort has been made to study the effect of ring footing resting on reinforced sand when subjected to eccentric, inclined and/or eccentric-inclined loadings. This paper aims to study the behavior of ring footing resting on loose sand and/or compacted randomly distributed fiberreinforced sand(RDFS) when subjected to eccentric(0 B, 0.05 B and 0.1 B, where B is the outer diameter of ring footing), inclined(0°,5°,10°, 15°,-5°,-10° and-15°)and eccentric-inclined loadings by using a finite element(FE) software PLAXIS 3 D. The behavior of ring footing is studied by using a dimensionless factor called reduction factor(RF). The numerical model used in the PLAXIS 3 D has been validated by conducting model plate load tests. Moreover, an empirical expression using regression analysis has been presented which will be helpful in plotting a load-settlement curve for the ring footing.展开更多
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the...Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.展开更多
The analytic expressions for the displacement components and stresses at a point of an orthotropic micropolar elastic medium with an overlying elastic half space as a result of moving inclined load of arbitrary orient...The analytic expressions for the displacement components and stresses at a point of an orthotropic micropolar elastic medium with an overlying elastic half space as a result of moving inclined load of arbitrary orientation were obtained. The inclined load was assumed to be a linear combination of a normal load and a tangential load. The eigen value approach using Fourier transforms was employed and the transform was inverted by using a numerical technique.The numerical results were illustrated graphically for aluminium epoxy composite.展开更多
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combina...In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.展开更多
Sand typically exhibits anisotropic internal structure which may significantly influence its mechanical behavior. The material point method (MPM) can eliminate mesh distortion and thus is suitable for investigating ge...Sand typically exhibits anisotropic internal structure which may significantly influence its mechanical behavior. The material point method (MPM) can eliminate mesh distortion and thus is suitable for investigating geotechnical problems with large deformation. In this study, an advanced anisotropic critical state theory (ACST)-based soil model is implemented in MPM to study the response of strip footing resting on anisotropic sand. The capability of the model is verified by simulating several element tests and strip footing tests with different soil densities and fabric bedding plane orientations. For the footing problem with a vertical load, as the fabric bedding plane orientation increases, the bearing capacity decreases and its corresponding settlement increases. The failure pattern becomes asymmetrical when the bedding plane orientation or the loading direction is inclined. A comparison between the simulation results predicted by the anisotropic and isotropic models is made, which demonstrates that neglecting the fabric anisotropy may lead to the overestimation of the bearing capacity.展开更多
The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, ...The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part.展开更多
The present investigation deals with the 2-dimensional deformation in a homogeneous thermoelastic solid with voids subjected to inclined loads.The heat conduction equation is affected with the Thomson coefficient.The ...The present investigation deals with the 2-dimensional deformation in a homogeneous thermoelastic solid with voids subjected to inclined loads.The heat conduction equation is affected with the Thomson coefficient.The basic governing equations are modified by using Green-Naghdi theory of type-III.The normal mode analysis technique is used to obtain the components of stress,strain,temperature,induced magnetic field and change in volume fraction field.The variations of these quantities have been depicted graphically in the Green-Naghdi theories of type-II and III for an insulated boundary.From numerical calculations,the effect of Thomson parameter and angle of inclination on a homogeneous,isotropic,electro-magneto-thermoelastic material with voids is revealed and discussed.展开更多
文摘Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.In the literature, very little or no effort has been made to study the effect of ring footing resting on reinforced sand when subjected to eccentric, inclined and/or eccentric-inclined loadings. This paper aims to study the behavior of ring footing resting on loose sand and/or compacted randomly distributed fiberreinforced sand(RDFS) when subjected to eccentric(0 B, 0.05 B and 0.1 B, where B is the outer diameter of ring footing), inclined(0°,5°,10°, 15°,-5°,-10° and-15°)and eccentric-inclined loadings by using a finite element(FE) software PLAXIS 3 D. The behavior of ring footing is studied by using a dimensionless factor called reduction factor(RF). The numerical model used in the PLAXIS 3 D has been validated by conducting model plate load tests. Moreover, an empirical expression using regression analysis has been presented which will be helpful in plotting a load-settlement curve for the ring footing.
基金Project(51178457) supported by the National Natural Science Foundation of ChinaProject(cstc2012jjys0001) supported by the Natural Science Foundation of Chongqing,ChinaProject(L2011231) supported by the Liaoning Education Department,China
文摘Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.
文摘The analytic expressions for the displacement components and stresses at a point of an orthotropic micropolar elastic medium with an overlying elastic half space as a result of moving inclined load of arbitrary orientation were obtained. The inclined load was assumed to be a linear combination of a normal load and a tangential load. The eigen value approach using Fourier transforms was employed and the transform was inverted by using a numerical technique.The numerical results were illustrated graphically for aluminium epoxy composite.
文摘In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52108359).
文摘Sand typically exhibits anisotropic internal structure which may significantly influence its mechanical behavior. The material point method (MPM) can eliminate mesh distortion and thus is suitable for investigating geotechnical problems with large deformation. In this study, an advanced anisotropic critical state theory (ACST)-based soil model is implemented in MPM to study the response of strip footing resting on anisotropic sand. The capability of the model is verified by simulating several element tests and strip footing tests with different soil densities and fabric bedding plane orientations. For the footing problem with a vertical load, as the fabric bedding plane orientation increases, the bearing capacity decreases and its corresponding settlement increases. The failure pattern becomes asymmetrical when the bedding plane orientation or the loading direction is inclined. A comparison between the simulation results predicted by the anisotropic and isotropic models is made, which demonstrates that neglecting the fabric anisotropy may lead to the overestimation of the bearing capacity.
基金Project(51408066)supported by the National Natural Science Foundation of China
文摘The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part.
文摘The present investigation deals with the 2-dimensional deformation in a homogeneous thermoelastic solid with voids subjected to inclined loads.The heat conduction equation is affected with the Thomson coefficient.The basic governing equations are modified by using Green-Naghdi theory of type-III.The normal mode analysis technique is used to obtain the components of stress,strain,temperature,induced magnetic field and change in volume fraction field.The variations of these quantities have been depicted graphically in the Green-Naghdi theories of type-II and III for an insulated boundary.From numerical calculations,the effect of Thomson parameter and angle of inclination on a homogeneous,isotropic,electro-magneto-thermoelastic material with voids is revealed and discussed.