We propose a method by which location of load for bending beam can be approxi- mately retrieved by matching the measured and theoretically forecasted displacement distribu- tion. To show the method validity, a princip...We propose a method by which location of load for bending beam can be approxi- mately retrieved by matching the measured and theoretically forecasted displacement distribu- tion. To show the method validity, a principal experiment is performed.展开更多
Extensibility and attainability of topology optimization are discussed by investigating a variety of simultaneous topology opti-mization methods extended from the standard formulation.First,the state of the art is hig...Extensibility and attainability of topology optimization are discussed by investigating a variety of simultaneous topology opti-mization methods extended from the standard formulation.First,the state of the art is highlighted through systematic classification of developed methods,such as simultaneous topology optimizations of microstructure and macrostructure,structure and supports,structure and design-dependent loads,structure and locations of involved components.Second,some recent results about simultaneous topology optimization of structure and applied loads are presented.It is shown that the simultaneous topology optimization is an integrated methodology that extends the concept of standard topology optimization in the sense of systematic design.The presence of more than one kind of design variable of different nature makes the optimization problem complex but enlarges the design space to attain the optimization.展开更多
文摘We propose a method by which location of load for bending beam can be approxi- mately retrieved by matching the measured and theoretically forecasted displacement distribu- tion. To show the method validity, a principal experiment is performed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51275424,51221001)the National Basic Research Program of China("973"Project)(Grant No.2011CB610304)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20126102130003)the NWPU Foundation for Fundamental Research(Grant No.NPU-FFR-201001)
文摘Extensibility and attainability of topology optimization are discussed by investigating a variety of simultaneous topology opti-mization methods extended from the standard formulation.First,the state of the art is highlighted through systematic classification of developed methods,such as simultaneous topology optimizations of microstructure and macrostructure,structure and supports,structure and design-dependent loads,structure and locations of involved components.Second,some recent results about simultaneous topology optimization of structure and applied loads are presented.It is shown that the simultaneous topology optimization is an integrated methodology that extends the concept of standard topology optimization in the sense of systematic design.The presence of more than one kind of design variable of different nature makes the optimization problem complex but enlarges the design space to attain the optimization.