期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines 被引量:2
1
作者 Yuan Yuan Jiong Tang 《Engineering》 SCIE EI 2017年第4期494-503,共10页
This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying tur... This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying turbulent wind fields have been under extensive investigation in recent years. We divide the related research activities into three categories: modeling and dynamics of wind turbines, active control of wind turbines, and passive control of wind turbines. Regarding turbine dynamics, we discuss the physical fundamentals and present the aeroelastic analysis tools. Regarding active control, we review pitch control, torque control, and yaw control strategies encompassing mathematical formulations as well as their applications toward different objectives. Our survey mostly focuses on blade pitch control, which is considered one of the key elements in facilitating load reduction while maintaining power capture performance. Regarding passive control, we review techniques such as tuned mass dampers, smart rotors, and microtabs. Possible future directions are suggested. 展开更多
关键词 Wind turbine Control approach Power optimization load mitigation
下载PDF
Observer-Based Disturbance Accommodation Control Strategy for Useful Lifetime Control and Structural Load Mitigation of Wind Turbines
2
作者 Rutendo Goboza Jackson Githu Njiri James Kuria Kimotho 《Journal of Power and Energy Engineering》 2022年第7期31-55,共25页
Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has ... Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has led to the development of large wind turbines, which result in increased structural loads, therefore, increasing the possibility of early failure due to fatigue load. This paper proposes a proportional integral observer (PI-Observer) based disturbance accommodation controller (DAC) with individual pitch control (IPC) for load mitigation to reduce components’ damage and ensure the wind turbine is operational for the expected lifetime. The results indicate a reduction in blades’ bending moments with a standard deviation of 15.9%, which positively impacts several other wind turbine subsystems. Therefore, the lifetime control strategy demonstrates effective structural load mitigation without compromise on power generation, thus, achieving a nominal lifetime control to inhibit premature failure. 展开更多
关键词 Disturbance Accommodation Control Individual Pitch Control Lifetime Control Structural load mitigation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部