Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, t...Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, the charging behavior of electric vehicles shall be optimally controlled taking into account network, vehicle, and customer requirements. We developed an efficient algorithm for calculating load shift potentials defined as the range of all charging curves meeting the customer’s requirements and respecting all individual charging and discharging constraints over time. In addition, we formulated a mixed integer linear program (MIP) applying semi-continuous variables to find cost-optimal load curves for every vehicle participating in a load shift. This problem can be solved by e.g. branch-and-bound algorithms. Results of two scenarios of Germany in 2015 and 2030 based on mobility studies show that the load shifting potential of EV is significant and contribute to a necessary relaxation of the future grid. The maximum charging and discharging power and the average battery capacity are crucial to the overall load shift potential.展开更多
Distribution networks are commonly used to demonstrate low-voltage problems.A new method to improve voltage quality is using battery energy storage stations(BESSs),which has a four-quadrant regulating capacity.In this...Distribution networks are commonly used to demonstrate low-voltage problems.A new method to improve voltage quality is using battery energy storage stations(BESSs),which has a four-quadrant regulating capacity.In this paper,an optimal dispatching model of a distributed BESS considering peak load shifting is proposed to improve the voltage distribution in a distribution network.The objective function is to minimize the power exchange cost between the distribution network and the transmission network and the penalty cost of the voltage deviation.In the process,various constraints are considered,including the node power balance,single/two-way power flow,peak load shifting,line capacity,voltage deviation,photovoltaic station operation,main transformer capacity,and power factor of the distribution network.The big M method is used to linearize the nonlinear variables in the objective function and constraints,and the model is transformed into a mixed-integer linear programming problem,which significantly improves the model accuracy.Simulations are performed using the modified IEEE 33-node system.A typical time period is selected to analyze the node voltage variation,and the results show that the maximum voltage deviation can be reduced from 14.06%to 4.54%.The maximum peak-valley difference of the system can be reduced from 8.83 to 4.23 MW,and the voltage qualification rate can be significantly improved.Moreover,the validity of the proposed model is verified through simulations.展开更多
Cross-spring pivots, formed by crossing two identical flexural beams at their midpoint, have been broadly used in precision engineering and aerospace fields. Many researches have been conducted on modeling and analysi...Cross-spring pivots, formed by crossing two identical flexural beams at their midpoint, have been broadly used in precision engineering and aerospace fields. Many researches have been conducted on modeling and analysis of cross-spring pivots. However the influence of application position and magnitude of the external loads on the load-rotation and parasitic motion characteristics has not yet been discussed. In order to reveal the effect of the external loads, this paper develops the accurate load-rotation and center shift models of cross-spring pivots, with generalized planar loads applied including bending moment, horizontal and vertical forces. Firstly, by using the energy method, the load-displacement models of the pivot are derived with the assumption of small rotational angles. Based on the models, the influence of generalized planar loads on the load-rotation relationship is discussed, which shows that both application position and magnitude of the vertical and horizontal forces influence the load-rotation behaviors. Then the accurate center shift expressions of the pivot with generalized planar loads are developed, which shows that the rotational angle is the dominant term for both components of the center shift while the vertical and horizontal forces are small. Finally, the accuracy of the proposed model is validated by finite element analysis(FEA). Comparing the model data with the results obtained from FEA, the relative error of the load-rotation is less than 6% even if the rotational angle reaches 20°; the relative errors of the two components of center shift are less than 5% and 10% respectively when the rotational angle reaches 10°. The proposed model and analytical conclusions can be used to analyze and preliminarily design the compliant mechanisms containing cross-spring pivots.展开更多
This paper describes the significant cost saving opportunities for consumers in developing countries by the use of computational intelligence and demand-side-management techniques to mitigate the massive use of diesel...This paper describes the significant cost saving opportunities for consumers in developing countries by the use of computational intelligence and demand-side-management techniques to mitigate the massive use of diesel back-up during grid outages. Application of load scheduling optimization is investigated during scheduled power outages, for residential consumer in India. The specific load shifting approaches explored include a day ahead predicted load schedule which is generated by performing a DSM referring to the forecasted day ahead outage. Whereas in reality the predicted may not match the actual outage, thus in these cases a fuzzy logic rule base is referred on real time basis to take corrective action & reach the best optimal load schedule possible to attain the lowest cost. The load types modeled include passive loads and schedulable, i.e. typically heavy loads. It is found that this multi-level DSM schemes show excellent benefits to the consumer. The maximum diesel savings for the consumer due to load shifting can be approximately ranging from 45% to as high as 75% for a flat-tariff grid. The study also showed that the actual savings potential depends on the timing of power outage, duration and the specific load characteristics.展开更多
基金supported by the Energy Solution Center(EnSoC),an association of major industrial corporations and research institutions in Germanysupport by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology
文摘Managing the charging process of a large number of electric vehicles to decrease the pressure on the local electricity grid is of high interest to the utilities. Using efficient mathematical optimization techniques, the charging behavior of electric vehicles shall be optimally controlled taking into account network, vehicle, and customer requirements. We developed an efficient algorithm for calculating load shift potentials defined as the range of all charging curves meeting the customer’s requirements and respecting all individual charging and discharging constraints over time. In addition, we formulated a mixed integer linear program (MIP) applying semi-continuous variables to find cost-optimal load curves for every vehicle participating in a load shift. This problem can be solved by e.g. branch-and-bound algorithms. Results of two scenarios of Germany in 2015 and 2030 based on mobility studies show that the load shifting potential of EV is significant and contribute to a necessary relaxation of the future grid. The maximum charging and discharging power and the average battery capacity are crucial to the overall load shift potential.
基金This work was supported by the Science and Technology Project of State Grid Corporation of China“Intelligent Coordination Control and Energy Optimization Management of Super-large Scale Battery Energy Storage Power Station Based on Information Physics Fusion-Simulation Model and Transient Characteristics of Super-large Scale Battery Energy Storage Power Station”(No.DG71-18-009).
文摘Distribution networks are commonly used to demonstrate low-voltage problems.A new method to improve voltage quality is using battery energy storage stations(BESSs),which has a four-quadrant regulating capacity.In this paper,an optimal dispatching model of a distributed BESS considering peak load shifting is proposed to improve the voltage distribution in a distribution network.The objective function is to minimize the power exchange cost between the distribution network and the transmission network and the penalty cost of the voltage deviation.In the process,various constraints are considered,including the node power balance,single/two-way power flow,peak load shifting,line capacity,voltage deviation,photovoltaic station operation,main transformer capacity,and power factor of the distribution network.The big M method is used to linearize the nonlinear variables in the objective function and constraints,and the model is transformed into a mixed-integer linear programming problem,which significantly improves the model accuracy.Simulations are performed using the modified IEEE 33-node system.A typical time period is selected to analyze the node voltage variation,and the results show that the maximum voltage deviation can be reduced from 14.06%to 4.54%.The maximum peak-valley difference of the system can be reduced from 8.83 to 4.23 MW,and the voltage qualification rate can be significantly improved.Moreover,the validity of the proposed model is verified through simulations.
基金supported by National Natural Science Foundation of China(Grant Nos. 50975007, 51105014)PhD Programs Foundation of Ministry of Education of China(Grant No. 20091102110023)China Postdoctoral Science Foundation(Grant No. 20100480179)
文摘Cross-spring pivots, formed by crossing two identical flexural beams at their midpoint, have been broadly used in precision engineering and aerospace fields. Many researches have been conducted on modeling and analysis of cross-spring pivots. However the influence of application position and magnitude of the external loads on the load-rotation and parasitic motion characteristics has not yet been discussed. In order to reveal the effect of the external loads, this paper develops the accurate load-rotation and center shift models of cross-spring pivots, with generalized planar loads applied including bending moment, horizontal and vertical forces. Firstly, by using the energy method, the load-displacement models of the pivot are derived with the assumption of small rotational angles. Based on the models, the influence of generalized planar loads on the load-rotation relationship is discussed, which shows that both application position and magnitude of the vertical and horizontal forces influence the load-rotation behaviors. Then the accurate center shift expressions of the pivot with generalized planar loads are developed, which shows that the rotational angle is the dominant term for both components of the center shift while the vertical and horizontal forces are small. Finally, the accuracy of the proposed model is validated by finite element analysis(FEA). Comparing the model data with the results obtained from FEA, the relative error of the load-rotation is less than 6% even if the rotational angle reaches 20°; the relative errors of the two components of center shift are less than 5% and 10% respectively when the rotational angle reaches 10°. The proposed model and analytical conclusions can be used to analyze and preliminarily design the compliant mechanisms containing cross-spring pivots.
文摘This paper describes the significant cost saving opportunities for consumers in developing countries by the use of computational intelligence and demand-side-management techniques to mitigate the massive use of diesel back-up during grid outages. Application of load scheduling optimization is investigated during scheduled power outages, for residential consumer in India. The specific load shifting approaches explored include a day ahead predicted load schedule which is generated by performing a DSM referring to the forecasted day ahead outage. Whereas in reality the predicted may not match the actual outage, thus in these cases a fuzzy logic rule base is referred on real time basis to take corrective action & reach the best optimal load schedule possible to attain the lowest cost. The load types modeled include passive loads and schedulable, i.e. typically heavy loads. It is found that this multi-level DSM schemes show excellent benefits to the consumer. The maximum diesel savings for the consumer due to load shifting can be approximately ranging from 45% to as high as 75% for a flat-tariff grid. The study also showed that the actual savings potential depends on the timing of power outage, duration and the specific load characteristics.