期刊文献+
共找到3,508篇文章
< 1 2 176 >
每页显示 20 50 100
Estimating Unconfined Compressive Strength of Sedimentary Rocks in United Arab Emirates from Point Load Strength Index 被引量:2
1
作者 Hussain Salah Maher Omar Abdallah Shanableh 《Journal of Applied Mathematics and Physics》 2014年第6期296-303,共8页
In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sed... In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature. 展开更多
关键词 SEDIMENTARY ROCKS UNITED Arab Emirates Unconfined COMPRESSIVE strength Point load strength INDEX Regression Analysis
下载PDF
Strength degradation of sandstone and granodiorite under uniaxial cyclic loading 被引量:14
2
作者 Rashid Geranmayeh Vaneghi Behnam Ferdosi +1 位作者 Achola D.Okoth Barnabas Kuek 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期117-126,共10页
Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks u... Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks under cyclic loading fail at much lower strength as compared to those subjected to the monotonic loading conditions. A few selected cored granodiorite and sandstone specimens have been subjected to uniaxial cyclic compression tests to obtain the unconfined fatigue strength and life. This study seeks to examine the effects of cyclic loading conditions, loading amplitude and applied stress level on the fatigue life of sandstone, as a soft rock, and granodiorite, as a hard rock, under uniaxial compression test. One aim of this study is to determine which of the loading conditions has a stronger effect on rock fatigue response. The fatigue response of hard rocks and soft rocks is also compared. It is shown that the loading amplitude is the most important factor affecting the cyclic response of the tested rocks. The more the loading amplitude, the shorter the fatigue life, and the greater the strength degradation. The granodiorite specimens showed more strength degradation compared to the sandstone specimens when subjected to cyclic loading. It is shown that failure modes of specimens under cyclic loadings are different from those under static loadings. More local cracks were observed under cyclic loadings especially for granodiorite rock specimens. 展开更多
关键词 Rock fatigue Cyclic loading strength degradation Fatigue life
下载PDF
Experimental study on remodeling strength of granular materials under different loads and lengths of time 被引量:2
3
作者 韩流 周伟 +3 位作者 才庆祥 舒继森 靖洪文 李鑫 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2783-2790,共8页
Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in a... Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program. 展开更多
关键词 load time granular materials remodeling shear strength
下载PDF
Residual Tensile Strength of Plain Concrete Under Tensile Fatigue Loading 被引量:2
4
作者 孟宪宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期564-568,共5页
The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Ba... The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established. 展开更多
关键词 CONCRETE FATIGUE uniaxial tensile fatigue loading residual tensile strength residual secant elastic modulus
下载PDF
Tensile Strength Characteristics of GFRP Bars in Concrete Beams with Work Cracks under Sustained Loading and Severe Environments 被引量:4
5
作者 何雄君 YANG Jingnan Charles E Bakis 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期934-937,共4页
To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkali... To investigate the effect of different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads, the beams were exposed in indoor, freeze/thaw cycles and immersed in alkaline solution at elevated temperature. The bars were carefully extracted from the beams and tested in order to evaluate residual tensile properties. The results show that the tensile strength decreased significantly in the highly aggressive conditions but not in the natural conditions. The effect of GFRP bars casting in concrete beams demonstrated approximately 2.5% decrease of tensile strength caused by pore water environment in concrete beams on basis of those of the original bars. The effect of sustained loading plus work cracks demonstrated about 10.5% tensile strength decrease on basis of those of the bars only casted in concrete beams. The effect of environments under sustained loading plus work cracks demonstrated about 17% tensile strength decrease caused by a saturated solution of Ca(OH)2 and 60-2 ℃ tap water (pH=12-13) and about 8% tensile strength decrease caused by freezing and thawing cycle (F/T), both on basis of those of the bars of the indoor beams only under sustained loading plus work cracks. The results demonstrate the effects of the tensile strengths under different environmental conditions of GFRP bars in concrete beams with work cracks subjected to sustained loads. 展开更多
关键词 GFRP bars concrete beams working cracks sustained loading and severe environments tensile strength
下载PDF
Strength reduction and step-loading finite element approaches in geotechnical engineering 被引量:23
6
作者 Yingren Zheng Xiaosong Tang +2 位作者 Shangyi Zhao Chujian Deng Wenjie Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期21-30,共10页
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch... The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling. 展开更多
关键词 finite element limit analysis method strength reduction step-loading embedded anti-slide piles reservoir slope FOUNDATION
下载PDF
Dynamic strength behavior of a Zr-based bulk metallic glass under shock loading
7
作者 俞宇颖 习锋 +5 位作者 戴诚达 蔡灵仓 谭叶 李雪梅 吴强 谭华 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期461-465,共5页
Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at ... Dynamic strength behavior of Zr51Ti5NiloCu25A19 bulk metallic glass (BMG) up to 66 GPa was investigated in a series of plate impact shock-release and shock-reload experiments. Particle velocity profiles measured at the sample/LiF window interface were used to estimate the shear stress, shear modulus, and yield stress in shocked BMG. Beyond confirm- ing the previously reported strain-softening of shear stress during the shock loading process for BMGs, it is also shown that the softened Zr-BMG still has a high shear modulus and can support large yield stress when released or reloaded from the shocked state, and both the shear modulus and the yield stress appear as strain-hardening behaviors. The work provides a much clearer picture of the strength behavior of BMGs under shock loading, which is useful to comprehensively understand the plastic deformation mechanisms of BMGs. 展开更多
关键词 shock loading dynamic strength bulk metallic glass
下载PDF
INFLUENCE OF LOADING RATE AND SPECIMEN HEIGHT ON FLEXURAL STRENGTH OF Al_2O_3 AT HIGH TEMPERATURES 被引量:1
8
作者 S.H. Bai, S.R. Qiao, S.R. Zhou and M.K. Kang Faculty 401, Northwestern Polytechnical University, Xian 710072, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第1期36-39,共4页
In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural stren... In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural strength of Al2O3 decreases with increasing specimen height at room temperature, and it tends to stability when height increases to a certain degree (h=5mm in this paper), while the flexural strength of Al2O3 variates unapparently at high temperature with increasing height. There is a critical loading rate R . c. When loading rate R . is less than R . c, the flexural strength of Al2O3 increases with increasing loading rate and it drops sharply when loading rate is higher than R . c. The sensitivity of flexural strength to the loading rate decreases with elevating temperatures. 展开更多
关键词 loading rate specimen height high temperature flexural strength
下载PDF
Strength criterion of composite solid propellants under dynamic loading 被引量:8
9
作者 Zhe-jun Wang Hong-fu Qiang +1 位作者 Guang Wang Biao Geng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期457-462,共6页
Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite sol... Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature. 展开更多
关键词 strength CRITERION UNIFIED strength theory Composite solid PROPELLANT Dynamic loadING BIAXIAL tension
下载PDF
Effects of Loading Rate on Flexural-tension Properties and Uniaxial Compressive Strength of Micro-surfacing Mixture 被引量:1
10
作者 陈筝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期656-658,共3页
The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxi... The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxial compressive test respectively. As a preventive maintenance surface treatment on asphalt pavement, micro-surfacing was formed on the basis of the ISSA recommendation of an optimum micro-surfacing design. Tests were conducted over a wide range of temperature to investigate the difference of properties from low loading rate to a relatively high loading rate. Three-point bending test was used to study the flexural strength, strain and modulus of micro-surfacing mixture, and uniaxial compressive test was carried out to obtain the relationship between strength and the loading rate as well as temperature. The experimental results showed that flexural strength at high loading rate was larger than that at low loading rate. The flexural strength difference between low and high loading rate enlarged when the temperature rose. The flexural strain at high loading rate increased compared with results of the low loading rate. Results of the flexural modulus revealed that micro-surfacing mixture exhibited better anti-cracking characteristic at low temperature when given a relatively low loading rate. Results of uniaxial compressive test revealed that the strength difference of micro-surfacing among different loading rates increased with the increase of temperature. The logarithm relationship between the strength and loading rate over a wide range of temperature was obtained to compare the experimental and predicted values, which resulting in a reasonable consistency. 展开更多
关键词 loading rate flexural-tension properties uniaxial compressive strength MICRO-SURFACING
下载PDF
Method for Calculating the Ultimate Strength of Pitting Corrosion Ship Structural Plates Under Combined Loads
11
作者 Lin Hua Fan Wh +1 位作者 Jinlei Mu Xiaolong Ma 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第5期78-85,共8页
In order to solve the problem of calculating the ultimate strength of marine plate under pitting corrosion,the plate taking from marine with pitting corrosion was studied. Based on the data of pitting corrosion record... In order to solve the problem of calculating the ultimate strength of marine plate under pitting corrosion,the plate taking from marine with pitting corrosion was studied. Based on the data of pitting corrosion recorded,the concept of pitting corrosion characteristic element matrix was proposed to describe the distribution and the forms of pitting. Moreover,the model of sensitivity calculation was established to analyse the sensitivity of pitting corrosion characteristic elements for the ultimate bearing capacity of ship structural plate. A new approach was proposed to calculate the ultimate strength of pitting damaged ship structural plate under combined loads based on the factor of rigidity reduction. Simultaneously this new approach was proven to be validated by finite element simulation. Finally,formula of ultimate strength of pitting damaged ship hull plate was established by series of numerical calculations based on the approach,and the reliability of the formula was validated as well. 展开更多
关键词 SHIP structure PITTING DAMAGE ULTIMATE strength combined loads sensitivity analysis
下载PDF
Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied 被引量:6
12
作者 Pei-Yun Shu Hung-Hui Li +1 位作者 Tai-Tien Wang Tzuu-Hsing Ueng 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期545-554,共10页
Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the inciden... Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure. 展开更多
关键词 Dynamic strength Failure pattern Rock with single planar loading rate Angle of load applied
下载PDF
Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading 被引量:5
13
作者 Wang Jiaojiao Shi Gang Shi Yongjiu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期611-622,共12页
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di... To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases. 展开更多
关键词 high strength steel width-to-thickness ratio axial load ratio seismic behavior I-section column
下载PDF
不同冲击气压下煤样动态剪切强度的长径比效应 被引量:1
14
作者 王磊 陈礼鹏 +2 位作者 袁秋鹏 焦振华 刘怀谦 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第1期131-139,共9页
采用Φ50mm分离式霍普金森压杆(SHPB)试验系统,开展了不同冲击气压下直径75mm,长径比分别为0.20,0.27,0.33,0.40和0.47的5组煤样的动态剪切试验,划分了煤动态剪应力时程曲线的阶段,探讨了冲击气压对煤样动态剪切强度的影响,分析了煤样... 采用Φ50mm分离式霍普金森压杆(SHPB)试验系统,开展了不同冲击气压下直径75mm,长径比分别为0.20,0.27,0.33,0.40和0.47的5组煤样的动态剪切试验,划分了煤动态剪应力时程曲线的阶段,探讨了冲击气压对煤样动态剪切强度的影响,分析了煤样动态剪切强度和加载率的长径比效应,并建立了长径比效应理论模型。研究结果表明:①煤样动态剪应力时程曲线可分为应力初始上升、应力线性增长、应力缓慢上升和应力下降4个阶段;②煤样动态剪切强度与冲击气压呈正线性相关,但不同长径比下增加幅度存在差异,具体表现为:相同冲击气压增量下,煤样长径比越小,动态剪切强度的增加幅度越大;③煤样动态剪切强度和加载率均与长径比有关,在0.25,0.35 MPa较低冲击气压与0.45,0.55 MPa较高冲击气压下分别呈现出正、负长径比效应,并通过方差分析确定了长径比对其影响最小的冲击气压为0.376MPa;④建立了不同冲击气压下煤样动态剪切强度长径比效应理论模型,通过加载率效应推导出加载率长径比效应理论模型,并验证了模型的合理性和准确性。 展开更多
关键词 长径比效应 动态剪切强度 加载率 敏感性
下载PDF
Characteristics of dynamic strain and strength of frozen silt under long-term dynamic loading 被引量:1
15
作者 ShuPing Zhao Wei Ma +1 位作者 GuiDe Jiao XiaoXiao Chang 《Research in Cold and Arid Regions》 2011年第6期478-484,共7页
The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I an... The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress ampli- tude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group IlI is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accttmulative sWain, but with different values. The accumulative swain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain ampli- tude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the sWain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase. 展开更多
关键词 frozen silt long-term dynamic loading accumulative strain strain amplitude residual strain dynamic strength
下载PDF
近疲劳强度循环荷载下粉砂岩强度变化机制 被引量:1
16
作者 苗胜军 尚向凡 +2 位作者 王辉 梁明纯 杨鹏锦 《工程科学学报》 EI CSCD 北大核心 2024年第6期982-993,共12页
通过开展不同循环次数的循环加卸载转单调加载试验,结合声发射和CT扫描技术,揭示了近疲劳强度循环荷载作用下泥质石英粉砂岩的细观破裂演化规律、裂隙扩展特征与强度变化机制.结果表明:(1)泥质石英粉砂岩的损伤应力小于疲劳强度,可称损... 通过开展不同循环次数的循环加卸载转单调加载试验,结合声发射和CT扫描技术,揭示了近疲劳强度循环荷载作用下泥质石英粉砂岩的细观破裂演化规律、裂隙扩展特征与强度变化机制.结果表明:(1)泥质石英粉砂岩的损伤应力小于疲劳强度,可称损伤应力与疲劳强度之间的应力水平为近疲劳强度.(2)随着循环次数增加,粉砂岩峰值强度先小幅下降后持续增加最终趋于稳定,当一次循环后轴向(体积)变形从压缩(膨胀)转为几乎不变时,可认为粉砂岩的强度从劣化转为强化.(3)单调加载阶段应力接近峰值强度时,粉砂岩中、低频区的声发射信号大幅增加,可将其视为岩石受压破坏的先兆.(4)当循环次数较低时,循环过程中粉砂岩的弱胶结结构断裂,有效承载面积减小,转单调加载后岩石破裂尺度增大、内部裂纹局部集中,发生劣化,呈单斜面剪切破坏.(5)当循环次数较高时,循环过程中粉砂岩胶结强度增加、细观结构更为致密与均匀,有效承载面积增大,岩石内部在泊松效应的影响下持续产生横向拉应力,转单调加载后岩石裂隙尺寸、裂隙密度和破碎程度降低,发生强化,呈张拉–剪切的复合裂隙网络. 展开更多
关键词 泥质石英粉砂岩 循环荷载 近疲劳强度 细观破裂特征 强度变化机制
下载PDF
不同围压及加载速率下的塑性混凝土动力特性研究 被引量:1
17
作者 徐毅安 邓博团 《建筑结构》 北大核心 2024年第3期71-76,共6页
为研究塑性混凝土在三向应力状态下的动力特性与破坏规律,设计符合工程实践的配合比方案,借助动三轴试验仪开展了其在不同围压和不同加载速率条件下的强度、应力及应变规律研究。最后依据试验成果建立了基于Bresler-Pister三参数的强度... 为研究塑性混凝土在三向应力状态下的动力特性与破坏规律,设计符合工程实践的配合比方案,借助动三轴试验仪开展了其在不同围压和不同加载速率条件下的强度、应力及应变规律研究。最后依据试验成果建立了基于Bresler-Pister三参数的强度准则。结果表明:塑性混凝土抗压强度与加载速率呈近线性正相关,材料抗压强度小于5.0MPa时对低加载速率更敏感,抗压强度大于5.0MPa时对高加载速率更敏感;不同加载速率下材料应力-应变规律基本一致,当应变达到1.47%~1.90%后其应力出现峰值,随后大幅度降低;不同围压条件下塑性混凝土抗压强度随围压的增加同样呈线性增长趋势,随着围压的提高,塑性混凝土峰值应力维持时间越长,材料抗裂性能越好;基于Bresler-Pister的强度准则公式其计算剪应力与三轴实测误差在1.61%~4.35%之间,基本反映了材料的变形破坏规律。 展开更多
关键词 塑性混凝土 围压 加载速率 动力特性 抗压强度
下载PDF
芯轴悬挂器高强度螺纹结构设计及评价研究
18
作者 刘洋 佘扬周 +1 位作者 练章华 易先中 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期159-169,共11页
为了防止芯轴下端连接螺纹强度不足而造成失效事故,采用高温高压套管柱设计计算方法、有限元数值模拟和实验手段,对芯轴材料进行了力学性能实验,开发了一种用于芯轴悬挂器高强度螺纹结构,并在极限复合载荷下对该螺纹进行了三维有限元计... 为了防止芯轴下端连接螺纹强度不足而造成失效事故,采用高温高压套管柱设计计算方法、有限元数值模拟和实验手段,对芯轴材料进行了力学性能实验,开发了一种用于芯轴悬挂器高强度螺纹结构,并在极限复合载荷下对该螺纹进行了三维有限元计算。研究结果表明,拉扭压复合载荷对外螺纹强度影响较大,压缩载荷对内螺纹内台肩第一牙应力影响较大,内外螺纹其余部位相对安全。拉伸载荷在一定程度缓解了上扣扭矩对内外螺纹台肩部位的影响。从计算结果得到内外螺纹整体上应力小于材料允许的屈服极限,且螺纹接头接触压力均大于外在流体压力,可以形成有效密封,研究结果为芯轴悬挂器螺纹结构的选型和使用提供理论基础。 展开更多
关键词 芯轴 螺纹 高强度 复合载荷 有限元
下载PDF
海陆交互相软土固结抗剪强度指标变化规律研究
19
作者 刘红军 何程铃 +2 位作者 陈锋 周志军 杨超 《森林工程》 北大核心 2024年第4期218-224,共7页
以珠三角地区海陆交互相淤泥质软土为研究对象,通过室内直剪试验探究不同固结压力和固结度下抗剪强度及抗剪强度指标的变化规律,提出抗剪强度及对应指标-固结度-固结压力三维Logistic数学模型。研究结果表明,当固结压力P≥200 kPa、固结... 以珠三角地区海陆交互相淤泥质软土为研究对象,通过室内直剪试验探究不同固结压力和固结度下抗剪强度及抗剪强度指标的变化规律,提出抗剪强度及对应指标-固结度-固结压力三维Logistic数学模型。研究结果表明,当固结压力P≥200 kPa、固结度U≥40%时,软土黏聚力(c)和内摩擦角(φ)增长较为明显;当U=100%时,各级固结压力作用下的软土抗剪强度(τ)相较于初始状态分别提高了7.89、12.73、13.50、18.20、22.38 kPa;所给出的三维数学模型可直接计算出某一固结压力和固结度下的抗剪强度指标c、φ、τ。研究成果能够更为准确地评价该地区软土地基逐级加载过程中的整体稳定性。 展开更多
关键词 海陆交互相软土 分级加载 抗剪强度指标 固结度 固结压力
下载PDF
Strength Prediction of Cruciform Specimen Under Biaxial Loading
20
作者 Weng Jingmeng Wen Weidong Xu Ying 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第3期286-295,共10页
In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements... In order to achieve a better understanding of failure behavior of cruciform specimen under different biaxial loading conditions,a three-dimensional finite element model is established with solid and interface elements.Maximum stress criterion,two Hashin-type criteria and the new proposed criteria are used to predict the strength of plain woven textile composites when biaxial loading ratio equals 1.Compared with experimental data,only the new proposed criteria can reach reasonable results.The applicability of the new proposed criteria is also verified by predicting the tensile and compressive strength of cruciform specimen under different biaxial loading ratios.Moreover,the introduction of interface element makes it more intuitive to recognize delamination failure.The shape of the predicted delamination failure region in the interface layer is similar to that of the failure region in neighboring entity layers,but the area of delamination failure region is a little larger. 展开更多
关键词 woven compressive tensile intuitive verified recognize specimen Prediction neighboring loaded
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部