期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stress response characteristics of BFRP anchors on loess mudstone slope under rainfall conditions
1
作者 WEI Hong WU Hong-gang +3 位作者 WU Dao-yong TANG Lin PAI Li-fang GUAN Wei 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1469-1482,共14页
To investigate the stress response characteristics and shear stress transfer mechanism of BFRP(basalt fiber reinforced plastics)anchors under rainfall conditions and to explore the reinforcement effect of BFRP anchors... To investigate the stress response characteristics and shear stress transfer mechanism of BFRP(basalt fiber reinforced plastics)anchors under rainfall conditions and to explore the reinforcement effect of BFRP anchors,a comparative indoor physical model test was conducted in this study using loess mudstone slope as a typical case,and multi-attribute response data,such as slope displacement,BFRP anchor strain and axial force,were obtained.Based on the variation law of slope displacement,it can be concluded that the deformation displacement of the slope on the side reinforced by BFRP anchors is smaller than that of slopes reinforced with steel anchors;the bearing capacity of BFRP anchor is given priority in time,and the anchoring effect of BFRP anchor at the top of the slope is given priority,and the axial force value of anchor is characterized by a surface amplification effect in space;the axial force is higher around the anchor head and tends to decay as a negative exponential function as the anchor extends in the direction of the interior of the slope;the shear stress of BFRP anchor and anchorage body are unevenly distributed along the axial direction,with the maximum value occurring in the free section near the slope surface and decreases as the BFRP anchor extends towards the interior of the slope.These results can provide a theoretical basis for the optimal design of BFRP anchors. 展开更多
关键词 BFRP Stress response characteristics Stress transfer mechanism load transfer curve
下载PDF
Bearing mechanism of a tunnel-type anchorage in a railway suspension bridge 被引量:4
2
作者 JIANG Nan WANG Duo +2 位作者 FENG Jun ZHANG Sheng-liang HUANG Lin 《Journal of Mountain Science》 SCIE CSCD 2021年第8期2143-2158,共16页
A tunnel-type anchorage(TTA)is one of the main components in suspension bridges:the bearing mechanism is a key problem.Investigating the deformation characteristics,development law,and failure phenomenon of a TTA unde... A tunnel-type anchorage(TTA)is one of the main components in suspension bridges:the bearing mechanism is a key problem.Investigating the deformation characteristics,development law,and failure phenomenon of a TTA under load can provide the theoretical basis for a robust design.Utilizing the TTA of the Jinsha River suspension bridge at Lijiang Shangri-La railway as a prototype,a laboratory model test of the TTA was carried out for three different contact conditions between the anchorage body and the surrounding rock.The stress and deformation distribution law of the anchorage body and its surrounding rock were studied,and the ultimate bearing capacity and failure mode of the TTA were analyzed.The test results show that the compressive stress level is highest at the rear part of the anchorage body.Moving away from the rear portion of the body,the stress decays in a negative exponential function.Based on the load transfer curve,the calculation formula for the shear stress on the contact surface between the anchorage body and the surrounding rock was derived,which shows that the distribution of the shear stress along the axial direction of the anchorage body is not uniform.The distance from the maximum value to the loading surface is approximately 1/3 of the length of the anchorage body,and the stress decreases as the distance from the loading surface increases.Furthermore,the contact condition between the anchorage body and surrounding rock has a great influence on the bearing capacity of the TTA.The increase in the anti-skid tooth ridge and radial anchor bolt can improve the cooperative working capacity of the anchorage body and the surrounding rock,which is approximately 50%higher than that of the flat contact condition.The main function of the anchor bolt is to increase the overall rigidity of the TTA.The contact condition between the anchorage body and the surrounding rock will lead to a change in the failure mode of the TTA.With an increase in the degree of contact,the failure mode will change from shear sliding along the interface to trumpet-shaped inverted cone-shaped failure extending into the surrounding rock. 展开更多
关键词 Tunnel anchorage Model test load transfer curve Interface mechanical behavior
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部