期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Load and velocity boundaries of oil-based superlubricity using 1,3-diketone
1
作者 Yuyang YUAN Tobias AMANN +4 位作者 Yuwen XU Yan ZHANG Jingfu CHEN Chenqing YUAN Ke LI 《Friction》 SCIE EI CAS CSCD 2023年第5期704-715,共12页
The clarification of the critical operating conditions and the failure mechanism of superlubricity systems is of great significance for seeking appropriate applications in industry.In this work,the superlubricity regi... The clarification of the critical operating conditions and the failure mechanism of superlubricity systems is of great significance for seeking appropriate applications in industry.In this work,the superlubricity region of 1,3-diketone oil EPND(1-(4-ethyl phenyl)nonane-1,3-dione)on steel surfaces was identified by performing a series of ball-on-disk rotation friction tests under various normal loads(3.5–64 N)and sliding velocities(100–600 mm/s).The result shows that beyond certain loads or velocities superlubricity failed to be reached due to the following negative effects:(1)Under low load(≤3.5 N),insufficient running-in could not ensure good asperity level conformity between the upper and lower surfaces;(2)the high load(≥64 N)produced excessive wear and big debris;(3)at low velocity(≤100 mm/s),the weak hydrodynamic effect and the generated debris deteriorated the lubrication performance;(4)at high velocity(≥500 mm/s),oil migration occurred and resulted in oil starvation.In order to expand the load and velocity boundaries of the superlubricity region,an optimized running-in method was proposed to avoid the above negative effects.By initially operating a running-in process under a suitable combination of load and velocity(e.g.16 N and 300 mm/s)and then switching to the target certain higher or lower load/velocity(e.g.100 N),the superlubricity region could break through its original boundaries.The result of this work suggests that oil-based superlubricity of 1,3-diketone is a promising solution to friction reduction under suitable operating conditions especially using a well-designed running-in strategy. 展开更多
关键词 macroscopic superlubricity 1 3-diketone oil running-in process load and velocity boundaries
原文传递
Experimental investigation into transient pressure pulses during pneumatic conveying of fine powders using Shannon entropy 被引量:3
2
作者 Amit Goel Anu Mittal +1 位作者 S.S. Mallick Atul Sharma 《Particuology》 SCIE EI CAS CSCD 2016年第6期143-153,共11页
This paper presents the results of an ongoing investigation into transient pressure pulses using Shan- non entropy. Pressure fluctuations (produced by gas-solid two-phase flow during fluidized dense-phase conveying)... This paper presents the results of an ongoing investigation into transient pressure pulses using Shan- non entropy. Pressure fluctuations (produced by gas-solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle den- sity 1950 kg/m3. loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 p,m, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluc- tuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3-5 m/s) and very high velocities (i.e. 11-14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6-8 m/s). 展开更多
关键词 Transient pressure fluctuations Fluidized dense phase Shannon entropy Flow pattern Solid loading ratio Superficial air velocity
原文传递
An experimental investigation into modeling solids friction for fluidized dense-phase pneumatic transport of powders 被引量:1
3
作者 G. Setia S.S. Mallick +1 位作者 R. Pan P.W. Wypych 《Particuology》 SCIE EI CAS CSCD 2017年第1期83-91,共9页
Results are presented of an ongoing investigation into modeling friction in fiuidized dense-phase pneumatic transport of bulk solids. Many popular modeling methods of the solids friction use the dimen- sionless solids... Results are presented of an ongoing investigation into modeling friction in fiuidized dense-phase pneumatic transport of bulk solids. Many popular modeling methods of the solids friction use the dimen- sionless solids loading ratio and Froude number. When evaluated under proper scale-up conditions of pipe diameter and length, many of these models have resulted in significant inaccuracy. A technique for modeling solids friction has been developed using a new combination of dimensionless numbers, volu- metric loading ratio and the ratio of particle free settling velocity to superficial conveying air velocity, to replace the solids loading ratio and Froude number. The models developed using the new formalism were evaluated for accuracy and stability under significant scale-up conditions for four different prod- ucts conveyed through four different test rigs (subject to diameter and length scale-up conditions). The new model considerably improves predictions compared with those obtained using the existing model, especially in the dense-phase region. Whereas the latter yields absolute average relative errors varying between 10% and 86%, the former yielded results with errors from 4% to 20% for a wide range of scale-up conditions. This represents a more reliable and narrower range of prediction that is suitable for industrial scale-up requirements. 展开更多
关键词 Fluidized dense-phase Pneumatic transport Solids friction factor Scale-up Volumetric loading ratio Dimensionless velocity
原文传递
Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system
4
作者 刘洁 白玉川 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第1期66-74,共9页
The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on th... The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on the key assumptions of the shallowness and the small deformation, a perturbation analysis is conducted up to the second order to find the mean Eulerian velocity in an Eulerian coordinate system. The numerical iteration method is adopted to solve these non-linear equations of the leading order. From the numerical results, both the first-order flow fields and the second-order mass transport velocities are examined. The verifications are made by comparing the numerical results with experimental results in the literature, and a good agreement is confirmed. 展开更多
关键词 mass transport velocity power-law model periodic pressure load Eulerian coordinates system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部