Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GD...Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.展开更多
The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usuall...The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.展开更多
The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were invest...The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were investigated for pig manure(PM)and pretreated/untreated corn stover in batch and semicontinuous anaerobic digestion(AD)system.The results showed that SMR and pretreatment affected co-digestion performance.The maximum cumulative methane yield of 428.5 ml·g^(-1)(based on volatile solids(VS))was obtained for PCP13,which was 35.7%and 40.0%higher than that of CSU and PM.In the first 5 days,the maximum methane yield improvement rate was 378.1%for PCP13.The daily methane yield per gram VS of PCP13 was 11.4%-18.5%higher than that of PC_(U)13.Clostridium_sensu_stricto_1,DMER64,and Bacteroides and Methanosaeta,Methanobacterium,and Methanospirillum had higher relative abundance at the genus level.Therefore,SMR and OLR are important factor affecting the AD process,and OLR can affect methane production through volatile fatty acids.展开更多
Urea as a source of cheap non-protein nitrogen is used to adulterate fish and meat meals which are basic components of broiler diets. The present study was carried out to elucidate the effects of urea on weight gain, ...Urea as a source of cheap non-protein nitrogen is used to adulterate fish and meat meals which are basic components of broiler diets. The present study was carried out to elucidate the effects of urea on weight gain, and hematological and biochemical profiles. A total of 48 broiler chicks were randomly allotted into 4 groups, designated Groups 1, 2, 3 and 4 of 12 birds each. Birds in Groups 2, 3 and 4 were fed on diets containing urea at the levels of 1%, 2.5% and 4%, respectively. Birds in Group 1 served as control and were not exposed to urea. Experimentation period was for 3 weeks and experiment was terminated when birds were 42 days of age. Body weight of all intoxicated birds at the various intervals was significantly decreased in comparison with that of the untreated control. Compared with control, all intoxicated broilers manifested significant (P ≤ 0.05) decrease in all hematological parameters involving erythrocytic and total leucocytic counts, Hemoglobin (Hb) and Packed Cell Volume (PCV) on a dose- and time-pattern. In comparison with the control levels, biochemical profile of the intoxicated birds disclosed significant decrease in blood glucose level and significant increase in serum uric acid, urea, Alkaline Phosphatase (ALP) and Lactate Dehydrogenase (LDH) levels. Based upon the present data, it was concluded that the addition of urea to broiler diets bears serious sequences concerning the general health condition, performance, weight gain, and hematological and biochemical profiles.展开更多
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar...The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.展开更多
To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ...To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.展开更多
Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und...Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×...Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.展开更多
The pinwheel pattern as a suitable and advantageous alternative for the loading implementation of the pallet loading problem (PLP) is identified after a survey on the loading pattern. The definitions, elements, cate...The pinwheel pattern as a suitable and advantageous alternative for the loading implementation of the pallet loading problem (PLP) is identified after a survey on the loading pattern. The definitions, elements, categories, generating algorithms of the pinwheel pattern are discussed and a uniform symmetric pinwheel notation is proposed. Based on the forming geometry of a pinwheel, the pinwheel structure is analyzed in terms of the innate box ratio, the box/block orientation and the box number by combinatorial and geometrical methods. A revised data set for the PLP with an area ratio range from 1 to 76 and a box ratio range from 1 to 10 is proposed. All pinwheel instances with this data set are calculated, and box ratio range is obtained for each possible pinwheel pattern, which can be found for all non-prime numbers of boxes. And a high box ratio makes an optimal pinwheel pattern more likely appear. Results identify the impact of the above pinwheel pattern and the box ratio on the pallet loading problem.展开更多
It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
BACKGROUND: The low graft-to-recipient weight ratio(GRWR) in adult-to-adult living donor liver transplantation(LDLT) is one of the major risk factors affecting graft survival. The goal of this study was to evaluate wh...BACKGROUND: The low graft-to-recipient weight ratio(GRWR) in adult-to-adult living donor liver transplantation(LDLT) is one of the major risk factors affecting graft survival. The goal of this study was to evaluate whether the lower limit of the GRWR can be safely reduced without portal pressure modulation in right-lobe LDLT. METHODS: From 2005 to 2011, 317 consecutive patients from a single institute underwent LDLT with right-lobe grafts without portal pressure modulation. Of these, 23 had a GRWR of less than 0.7%(group A), 27 had a GRWR of ≥0.7%, 【0.8%(group B), and 267 had a GRWR of more than and equal to 0.8%(group C). Medical records, including recipient, donor, operation factors, laboratory findings and complications were reviewed retrospectively. RESULTS: The baseline demographics showed low model for end-stage liver disease score(mean 16.3±8.9) and high percentage of hepatocellular carcinoma(231 patients, 72.9%). Three groups by GRWR demonstrated similar characteristics except recipient body mass index and donor gender. For smallforsize syndrome, there were 3(13.0%) in group A, 1(3.7%) in group B, and 2 patients(0.7%) in group C(P【0.001). Hepatic artery thrombosis was more frequently observed in group A than in groups B and C(8.7% vs 3.7% vs 1.9%, P=0.047). However, among the three groups, graft survival rates at 1 year(100% vs 96.3% vs 93.6%) and 3 years(91.7% vs 73.2% vs 88.1%) were not different(P=0.539). In laboratory measurements,there was no group difference in total bilirubin and albumin. However, prothrombin time was longer in group A within postoperative 1 week and platelet count was lower in groups A and B within postoperative 1 month. CONCLUSION: A GRWR lower to 0.7% is safe and does not need to modulate portal pressure in adult-to-adult LDLT using the right-lobe in favorable conditions including low model for end-stage liver disease score.展开更多
In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result ...In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result in a great underestimation of blast loads in the near field and lead to an unsafe design.However, there is still a lack of systematic quantitative analysis of the blast loads generated from cylindrical charges. In this study, a numerical model is developed by using the hydrocode AUTODYN to investigate the influences of aspect ratio and orientation on the free air blast loads generated from center-initiated cylindrical charges. This is done by examining the pressure contours, the peak overpressures and impulses for various aspect ratios ranged from 1 to 8 and arbitrary orientation monitored along every azimuth angle with an interval of 5°. To characterize the distribution patterns of blast loads,three regions, i.e., the axial region, the vertex region and the radial region are identified, and the propagation of blast waves in each region is analyzed in detail. The complexity of blast loads of cylindrical charges is found to result from the bridge wave and its interaction with primary waves. Several empirical formulas are presented based on curve-fitting the numerical data, including the orientation where the maximum peak overpressure emerges, the critical scaled distance beyond which the charge shape effect could be neglected and blast loads with varied aspect ratio in arbitrary orientation, all of which are useful for blast-resistant design.展开更多
Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system ...Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.展开更多
Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular c...Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections.展开更多
Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are...Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are introduced. Then, the ratio of live load effect to dead load effect is estimated. The target reliabilities for design of offshore structures in China offshore area are calibrated by past practice in API RP2A-WSD code. The load and resistance factors are optimized by minimizing the difference within the target reliability and the resulting reliability over the range of load effect ratios. Considering the concurrence of different loads, load combination factors are obtained through an optimization process, and the relation between the load combination factor and load correlation coefficient is established. Finally, the design formulae for steel jacket structures in China offshore area are recommended.展开更多
In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on...In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.展开更多
The load/unload experiments on rock failure under pressure have been carried out in Material Test System (MTS) in the Laboratory for Non-linear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Acad...The load/unload experiments on rock failure under pressure have been carried out in Material Test System (MTS) in the Laboratory for Non-linear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Academy of Sciences, and load/unload response ratio (LURR) values with strain as response (i.e. inverse elastic constant as response rate) have been obtained. The experimental results are in accordance with theoretical results and those in real earthquakes: LURR rises just before rock failure. So LURR can be used as the precursor of rock failure and earthquake prediction.展开更多
Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading pro...Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading process of underground rocks. The damages emerging inside the rock samples were recorded by the acoustic emission technique during the loading process. The experimental results were consistent with prediction by LURR theory. Integrating the changing processes of LURR value Y and the location process of acoustic emission events showed agreement between the variation of LURR value Y and the damage evolution inside the rocks. Furthermore, the high value of Y emerged before the complete breakdown of materials. Therefore, the damage evolution of rock specimen can be quantitatively analyzed with LURR theory, thus the failure of the rock materials and the earthquake occurrence may be predicted. The experimental results gave a further verification of LURR theory.展开更多
A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to...A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to the infarct locus.The therapeutic effect of nerve growth factor against cerebral infarction was assessed using the hemisphere anomalous volume ratio,a quantitative index of diffusion-weighted MRI.At 6 hours,24 hours,7 days and 3 months after modeling,the hemisphere anomalous volume ratio was significantly reduced after treatment with nerve growth factor. Hematoxylin-eosin staining,immunohistochemistry,electron microscopy and neurological function scores showed that infarct defects were slightly reduced and neurological function significantly improved after nerve growth factor treatment.This result was consistent with diffusion-weighted MRI measurements.Experimental findings indicate that nerve growth factor can protect against cerebral infarction,and that the hemisphere anomalous volume ratio of diffusion-weighted MRI can be used to evaluate the therapeutic effect.展开更多
文摘Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.
文摘The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.
基金the fund supports from the Fundamental Research Funds for the Central Universities(JD2326).
文摘The effects of substrate mingling ratio(SMR)(1:1,1:2,1:3,3:1,and 2:1)and organic loading rate(OLR)(50-90 g total solids per liter per day)on anaerobic co-digestion performance and microbial characteristics were investigated for pig manure(PM)and pretreated/untreated corn stover in batch and semicontinuous anaerobic digestion(AD)system.The results showed that SMR and pretreatment affected co-digestion performance.The maximum cumulative methane yield of 428.5 ml·g^(-1)(based on volatile solids(VS))was obtained for PCP13,which was 35.7%and 40.0%higher than that of CSU and PM.In the first 5 days,the maximum methane yield improvement rate was 378.1%for PCP13.The daily methane yield per gram VS of PCP13 was 11.4%-18.5%higher than that of PC_(U)13.Clostridium_sensu_stricto_1,DMER64,and Bacteroides and Methanosaeta,Methanobacterium,and Methanospirillum had higher relative abundance at the genus level.Therefore,SMR and OLR are important factor affecting the AD process,and OLR can affect methane production through volatile fatty acids.
文摘Urea as a source of cheap non-protein nitrogen is used to adulterate fish and meat meals which are basic components of broiler diets. The present study was carried out to elucidate the effects of urea on weight gain, and hematological and biochemical profiles. A total of 48 broiler chicks were randomly allotted into 4 groups, designated Groups 1, 2, 3 and 4 of 12 birds each. Birds in Groups 2, 3 and 4 were fed on diets containing urea at the levels of 1%, 2.5% and 4%, respectively. Birds in Group 1 served as control and were not exposed to urea. Experimentation period was for 3 weeks and experiment was terminated when birds were 42 days of age. Body weight of all intoxicated birds at the various intervals was significantly decreased in comparison with that of the untreated control. Compared with control, all intoxicated broilers manifested significant (P ≤ 0.05) decrease in all hematological parameters involving erythrocytic and total leucocytic counts, Hemoglobin (Hb) and Packed Cell Volume (PCV) on a dose- and time-pattern. In comparison with the control levels, biochemical profile of the intoxicated birds disclosed significant decrease in blood glucose level and significant increase in serum uric acid, urea, Alkaline Phosphatase (ALP) and Lactate Dehydrogenase (LDH) levels. Based upon the present data, it was concluded that the addition of urea to broiler diets bears serious sequences concerning the general health condition, performance, weight gain, and hematological and biochemical profiles.
基金provided by the National Natural Science Foundation of China(52074300)the Program of China Scholarship Council(202206430024)+2 种基金the National Natural Science Foundation of China Youth Science(52104139)Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)Guizhou province science and technology planning project([2020]3007,[2020]3008)。
文摘The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.
基金the National Natural Science Foundation of China Youth Fund,Research on Security Low Carbon Collaborative Situation Awareness of Comprehensive Energy System from the Perspective of Dynamic Security Domain(52307130).
文摘To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51839003 and 42207221).
文摘Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Beijing Natural Science Foundation,China
文摘Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.
基金The National Natural Science Foundation of China(No.70571033,70831002)
文摘The pinwheel pattern as a suitable and advantageous alternative for the loading implementation of the pallet loading problem (PLP) is identified after a survey on the loading pattern. The definitions, elements, categories, generating algorithms of the pinwheel pattern are discussed and a uniform symmetric pinwheel notation is proposed. Based on the forming geometry of a pinwheel, the pinwheel structure is analyzed in terms of the innate box ratio, the box/block orientation and the box number by combinatorial and geometrical methods. A revised data set for the PLP with an area ratio range from 1 to 76 and a box ratio range from 1 to 10 is proposed. All pinwheel instances with this data set are calculated, and box ratio range is obtained for each possible pinwheel pattern, which can be found for all non-prime numbers of boxes. And a high box ratio makes an optimal pinwheel pattern more likely appear. Results identify the impact of the above pinwheel pattern and the box ratio on the pallet loading problem.
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
文摘BACKGROUND: The low graft-to-recipient weight ratio(GRWR) in adult-to-adult living donor liver transplantation(LDLT) is one of the major risk factors affecting graft survival. The goal of this study was to evaluate whether the lower limit of the GRWR can be safely reduced without portal pressure modulation in right-lobe LDLT. METHODS: From 2005 to 2011, 317 consecutive patients from a single institute underwent LDLT with right-lobe grafts without portal pressure modulation. Of these, 23 had a GRWR of less than 0.7%(group A), 27 had a GRWR of ≥0.7%, 【0.8%(group B), and 267 had a GRWR of more than and equal to 0.8%(group C). Medical records, including recipient, donor, operation factors, laboratory findings and complications were reviewed retrospectively. RESULTS: The baseline demographics showed low model for end-stage liver disease score(mean 16.3±8.9) and high percentage of hepatocellular carcinoma(231 patients, 72.9%). Three groups by GRWR demonstrated similar characteristics except recipient body mass index and donor gender. For smallforsize syndrome, there were 3(13.0%) in group A, 1(3.7%) in group B, and 2 patients(0.7%) in group C(P【0.001). Hepatic artery thrombosis was more frequently observed in group A than in groups B and C(8.7% vs 3.7% vs 1.9%, P=0.047). However, among the three groups, graft survival rates at 1 year(100% vs 96.3% vs 93.6%) and 3 years(91.7% vs 73.2% vs 88.1%) were not different(P=0.539). In laboratory measurements,there was no group difference in total bilirubin and albumin. However, prothrombin time was longer in group A within postoperative 1 week and platelet count was lower in groups A and B within postoperative 1 month. CONCLUSION: A GRWR lower to 0.7% is safe and does not need to modulate portal pressure in adult-to-adult LDLT using the right-lobe in favorable conditions including low model for end-stage liver disease score.
基金supported by the National Natural Science Foundations of China (51808550, 52078133)the China Postdoctoral Science Foundation (2020M671296)。
文摘In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result in a great underestimation of blast loads in the near field and lead to an unsafe design.However, there is still a lack of systematic quantitative analysis of the blast loads generated from cylindrical charges. In this study, a numerical model is developed by using the hydrocode AUTODYN to investigate the influences of aspect ratio and orientation on the free air blast loads generated from center-initiated cylindrical charges. This is done by examining the pressure contours, the peak overpressures and impulses for various aspect ratios ranged from 1 to 8 and arbitrary orientation monitored along every azimuth angle with an interval of 5°. To characterize the distribution patterns of blast loads,three regions, i.e., the axial region, the vertex region and the radial region are identified, and the propagation of blast waves in each region is analyzed in detail. The complexity of blast loads of cylindrical charges is found to result from the bridge wave and its interaction with primary waves. Several empirical formulas are presented based on curve-fitting the numerical data, including the orientation where the maximum peak overpressure emerges, the critical scaled distance beyond which the charge shape effect could be neglected and blast loads with varied aspect ratio in arbitrary orientation, all of which are useful for blast-resistant design.
基金supported by Innovation Fund Program of China Electric Power Research Institute(NY83-19-003)
文摘Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.
基金Supported by the National Natural Science Foundation of China(No.51268054 and No.51468061)the Natural Science Foundation of Tianjin(No.13JCQNJC07300)Foundation of Xinjiang University(No.XY110137)
文摘Nonlinear finite element analysis and parametric studies were carried out to study the influence of axial load ratio on the shear behavior of the through-diaphragm connections of concrete-filled square steel tubular columns. The analysis reveals that smaller axial load ratio can improve the shear bearing capacity and ductility while larger axial load ratio will decrease the shear behavior of the through-diaphragm connections. The parametric studies indicate that the axial load ratio should be limited to less than 0.4 and its influence should be considered in the analysis and design of such connections.
文摘Adopting the load and resistance factor design format, the design method for steel jaeket platform structures is developed. Firstly, the limit state equations and design format for steel jacket platform structures are introduced. Then, the ratio of live load effect to dead load effect is estimated. The target reliabilities for design of offshore structures in China offshore area are calibrated by past practice in API RP2A-WSD code. The load and resistance factors are optimized by minimizing the difference within the target reliability and the resulting reliability over the range of load effect ratios. Considering the concurrence of different loads, load combination factors are obtained through an optimization process, and the relation between the load combination factor and load correlation coefficient is established. Finally, the design formulae for steel jacket structures in China offshore area are recommended.
基金Project(51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the Funds for New Century Excellent Talents in University of China+1 种基金Project(12TD007)supported by the Scientific Research Innovation Team Program of Sichuan Colleges and Universities,ChinaProject(2014TD0025)supported by the Youth Scientific Research Innovation Team Program of Sichuan Province,China
文摘In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.
基金This project was sponsored by the National Natural Science Foundation (No. 19732006), China and Ninth Five-year Plan, China Seismological Bureau.
文摘The load/unload experiments on rock failure under pressure have been carried out in Material Test System (MTS) in the Laboratory for Non-linear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Academy of Sciences, and load/unload response ratio (LURR) values with strain as response (i.e. inverse elastic constant as response rate) have been obtained. The experimental results are in accordance with theoretical results and those in real earthquakes: LURR rises just before rock failure. So LURR can be used as the precursor of rock failure and earthquake prediction.
文摘Implementing acoustic emission experiments with large rock samples, LURR (Load/Unload Response Ratio) theory was studied. The loading conditions in the experiments were designed to simulate the complicated loading process of underground rocks. The damages emerging inside the rock samples were recorded by the acoustic emission technique during the loading process. The experimental results were consistent with prediction by LURR theory. Integrating the changing processes of LURR value Y and the location process of acoustic emission events showed agreement between the variation of LURR value Y and the damage evolution inside the rocks. Furthermore, the high value of Y emerged before the complete breakdown of materials. Therefore, the damage evolution of rock specimen can be quantitatively analyzed with LURR theory, thus the failure of the rock materials and the earthquake occurrence may be predicted. The experimental results gave a further verification of LURR theory.
基金supported by the Hebei Provincial Medical Science Research Key Youth Project,No.20100078
文摘A model of focal cerebral ischemic infarction was established in dogs through middle cerebral artery occlusion of the right side.Thirty minutes after occlusion,models were injected with nerve growth factor adjacent to the infarct locus.The therapeutic effect of nerve growth factor against cerebral infarction was assessed using the hemisphere anomalous volume ratio,a quantitative index of diffusion-weighted MRI.At 6 hours,24 hours,7 days and 3 months after modeling,the hemisphere anomalous volume ratio was significantly reduced after treatment with nerve growth factor. Hematoxylin-eosin staining,immunohistochemistry,electron microscopy and neurological function scores showed that infarct defects were slightly reduced and neurological function significantly improved after nerve growth factor treatment.This result was consistent with diffusion-weighted MRI measurements.Experimental findings indicate that nerve growth factor can protect against cerebral infarction,and that the hemisphere anomalous volume ratio of diffusion-weighted MRI can be used to evaluate the therapeutic effect.