期刊文献+
共找到99,982篇文章
< 1 2 250 >
每页显示 20 50 100
Force and impulse multi-sensor based on flexible gate dielectric field effect transistor
1
作者 Chao Tan Junling Lü +3 位作者 Chunchi Zhang Dong Liang Lei Yang Zegao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期214-220,共7页
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ... Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months. 展开更多
关键词 flexible gate dielectric transistor force sensor impulse sensor force sensor array
下载PDF
A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach
2
作者 Linlin Sun Zihui Wang +3 位作者 Shukun Cui Ziquan Yan Weiping Hu Qingchun Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期555-577,共23页
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ... Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time. 展开更多
关键词 Rail weld irregularity high-speed railway vehicle-track coupled dynamics wheel/rail dynamic vertical force artificial neural networks
下载PDF
ForceCT双能量与低kV扫描技术在头颈CTA中的对比分析
3
作者 陈洋 《中文科技期刊数据库(引文版)医药卫生》 2024年第9期0118-0121,共4页
探索并比较Force CT双能量与低kV扫描技术在头颈CTA中的作用。方法 以系统随机化法,将2022.01-2023.01在我院接受头颈CTA检查的40例患者均分为两组各20例。其中观察组患者采用低kV扫描技术,对照组则进行Force CT双能量扫描。比较两组的... 探索并比较Force CT双能量与低kV扫描技术在头颈CTA中的作用。方法 以系统随机化法,将2022.01-2023.01在我院接受头颈CTA检查的40例患者均分为两组各20例。其中观察组患者采用低kV扫描技术,对照组则进行Force CT双能量扫描。比较两组的辐射剂量、图像质量。结果 观察组的辐射剂量指数低于对照组,P<0.05。观察组的大脑中动脉与颈内动脉图像质量均高于对照组,P<0.05。结论 运用低kV扫描技术,能较好地降低头颈CTA检查时的辐射剂量,与此同时还能得到更为高质量的图像,帮助病情的更快诊断,患者能尽快得到个性化的治疗,早日恢复健康。 展开更多
关键词 force CT双能量扫描 低kV扫描 辐射剂量 头颈CTA
下载PDF
Force CT高级建模迭代重建算法对门静脉图像质量的影响
4
作者 陈洋 周子茜 +1 位作者 吕俊红 陈柳娟 《影像研究与医学应用》 2024年第4期76-78,共3页
目的:探讨Force CT高级建模迭代重建算法(ADMIRE)对门静脉图像质量影响。方法:回顾性分析2022年1—4月于中山大学附属第八医院行上腹部CT平扫及增强的40例患者影像资料,在syngo.via后处理工作站重建,采用门脉期原始数据重建出滤波反投... 目的:探讨Force CT高级建模迭代重建算法(ADMIRE)对门静脉图像质量影响。方法:回顾性分析2022年1—4月于中山大学附属第八医院行上腹部CT平扫及增强的40例患者影像资料,在syngo.via后处理工作站重建,采用门脉期原始数据重建出滤波反投影算法(FBP)、ADMIRE1、ADMIRE3、ADMIRE5 4组不同重建算法的图像,在4组不同算法图像上测量门静脉干中心位置、肝实质及同层竖脊肌的CT值和噪声值,计算门静脉和肝实质的信噪比(SNR)和对比噪声比(CNR)。此外,由两位具有5年以上诊断经验的医生对图像进行主观评分。结果:随着迭代等级的增高,图像的CNR、SNR呈现上升的趋势,图像的噪声值呈现下降的趋势,其中ADMIRE5组图像中门静脉和肝脏具有最高的CNR和SNR且具有最低的噪声值,以及最高的主观评分,采用ADMIRE5重建算法的门静脉与周围组织对比非常好,门静脉5级分支显示良好。结论:高级建模迭代重建ADMIRE算法相比于FBP重建算法,降噪效果更好,门静脉的显示更加锐利,能提升门静脉的图像质量。 展开更多
关键词 门静脉 高级建模迭代重建 force CT 图像质量
下载PDF
Additively manufactured Ti–Ta–Cu alloys for the next-generation load-bearing implants 被引量:1
5
作者 Amit Bandyopadhyay Indranath Mitra +4 位作者 Sushant Ciliveri Jose D Avila William Dernell Stuart B Goodman Susmita Bose 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期353-374,共22页
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m... Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants. 展开更多
关键词 TI6AL4V load-bearing implants additive manufacturing 3D printing antibacterial performance
下载PDF
Sensitivity impacts owing to the variations in the type of zero-range pairing forces on the fission properties using the density functional theory 被引量:1
6
作者 Yang Su Ze-Yu Li +3 位作者 Li-Le Liu Guo-Xiang Dong Xiao-Bao Wang Yong-Jing Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期198-207,共10页
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair... Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data. 展开更多
关键词 Nuclear fission Density functional theory Pairing force Potential energy surfaces Fission fragment distribution
下载PDF
Research on the influence of flexible wheelset rotation effect on wheel rail contact force 被引量:1
7
作者 Lixia Sun Yuanwu Cai +2 位作者 Di Cheng Xiaoyi Hu Chunyang Zhou 《Railway Sciences》 2024年第3期367-387,共21页
Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different an... Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models. 展开更多
关键词 Flexible wheelset Contact points calculation Rotational effects Elastic modes Wheel-rail force Papertype Researchpaper
下载PDF
Analysis model for damage of reinforced bars in RC beams under contact explosion
8
作者 Chaozhi Yang Zhengxiang Huang +2 位作者 Xin Jia Wei Shang Jian Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期104-118,共15页
The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this stu... The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures. 展开更多
关键词 Reinforced concrete beam Contact explosion Reinforced bar Damage analysis Residual load-bearing capacity
下载PDF
Recent advances and future prospects in tactile sensors for normal and shear force detection,decoupling,and applications
9
作者 Jinrong Huang Yuchen Guo +3 位作者 Yongchang Jiang Feiyu Wang Lijia Pan Yi Shi 《Journal of Semiconductors》 EI CAS CSCD 2024年第12期17-31,共15页
Human skin,through its complex mechanoreceptor system,possesses the exceptional ability to finely perceive and dif-ferentiate multimodal mechanical stimuli,forming the biological foundation for dexterous manipulation,... Human skin,through its complex mechanoreceptor system,possesses the exceptional ability to finely perceive and dif-ferentiate multimodal mechanical stimuli,forming the biological foundation for dexterous manipulation,environmental explo-ration,and tactile perception.Tactile sensors that emulate this sensory capability,particularly in the detection,decoupling,and application of normal and shear forces,have made significant strides in recent years.This review comprehensively examines the latest research advancements in tactile sensors for normal and shear force sensing,delving into the design and decoupling methods of multi-unit structures,multilayer encapsulation structures,and bionic structures.It analyzes the advantages and disadvantages of various sensing principles,including piezoresistive,capacitive,and self-powered mechanisms,and evalu-ates their application potential in health monitoring,robotics,wearable devices,smart prosthetics,and human-machine interaction.By systematically summarizing current research progress and technical challenges,this review aims to provide forward-looking insights into future research directions,driving the development of electronic skin technology to ultimately achieve tactile perception capabilities comparable to human skin. 展开更多
关键词 tactile sensors shear force force decoupling e-skin
下载PDF
Load-bearing characteristics and energy evolution of fractured rock masses after granite and sandstone grouting
10
作者 WU Xu-kun ZHAO Guang-ming +4 位作者 MENG Xiang-rui LIU Chong-yan LIU Zhi-xi HUANG Shun-jie ZHANG Qi-hang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2810-2825,共16页
Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of ... Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting. 展开更多
关键词 grouting-reinforced rock mass particle size energy dissipation ratio post-peak stress decreasing rate load-bearing characteristics
下载PDF
Comparisons of Wave Force Model Effects on the Structural Responses and Fatigue Loads of a Semi-Submersible Floating Wind Turbine
11
作者 HAN Yanqing LE Conghuan +1 位作者 ZHANG Puyang XU Shengnan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期69-79,共11页
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ... The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses. 展开更多
关键词 floating wind turbine wave force model potential flow theory Morison equation second-order wave forces
下载PDF
Study of the Lift Force Induced by An Interceptor on A High-Speed Mono-Hull:The Affecting Factors and Estimation Formula
12
作者 DENG Rui HU Yu-xiao +3 位作者 HUANG Si-chong SONG Zhi-jie WANG Shi-gang WU Tie-cheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期557-571,共15页
To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ... To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition. 展开更多
关键词 high-speed mono-hull ship INTERCEPTOR lift force formula lift force towing tank test computational fluid dynamics
下载PDF
A material change for ultra-high precision force sensing
13
作者 Christopher Perrella Kishan Dholakia 《Light(Science & Applications)》 SCIE EI CSCD 2024年第11期2443-2445,共3页
An original form of photonic force microscope has been developed.Operating with a trapped lanthanide-doped crystal of nanometric dimensions,a minimum detected force of the order of 110 aN and a force sensitivity down ... An original form of photonic force microscope has been developed.Operating with a trapped lanthanide-doped crystal of nanometric dimensions,a minimum detected force of the order of 110 aN and a force sensitivity down to 1.8 fN/ffiffiffiffiffi Hz p have been realised.This opens up new prospects for force sensing in the physical sciences. 展开更多
关键词 DIMENSIONS HIGH force
原文传递
Quantitative analysis on resistant forces at oil-surfactant-rock interfaces with dynamic wettability characterization
14
作者 Qiaoyu Ge Tao Ma +1 位作者 Guanli Xu Zengmin Lun 《Energy Geoscience》 EI 2024年第3期305-312,共8页
Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used ... Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used to study the interfacial interaction for some specific oil-water-rock systems,experimental measurements provide more realistic and reliable evidence.In this work,we propose a dynamic wettability characterization method to indirectly measure resistant forces at oil-surfactant-rock interfaces,including frictional force,wettability hysteresis force,and viscous force,which are parallel with the oil-solid interface.The adhesive force,which is normal to the oil-solid interface is calculated through measurement of work of adhesion.The results show that work of adhesion instead of contact angle can better describe the adhesion of oil at solid surface.The effect of surfactant concentration on work of adhesion is different for water-wet and oil-wet surfaces.Moreover,average viscous forces are calculated through force analysis on oil drops moving along solid surface in different surfactant environments.It is found that viscous force has a magnitude comparable to the frictional force during the movement,while the wettability hysteresis force is negligible.On the other hand,the adhesive force calculated from the work of adhesion is also comparable to the viscous force.Therefore,both the resistant forces parallel with and normal to the oil-solid interface should be minimized for the liberation of oil from rock surface.This work proposes a simple method to evaluate the wetting capability of different surfactants and measure the adhesive force between heavy oil and rock surfaces indirectly,which provides insight into the adhesion of heavy oil at rock surface and would be valuable for the development of surfactant-based oil recovery methods. 展开更多
关键词 Work of adhesion Wettability characterization Adhesive force Viscous force SURFACTANT
下载PDF
Culturally competent care across borders: Implementing culturally responsive teaching for nurses in diverse workforces
15
作者 Abdulqadir J.Nashwan 《International Journal of Nursing Sciences》 CSCD 2024年第1期155-157,共3页
The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as... The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as political instability or conflict in their home countries.The World Health Organization(WHO)has noted that high-income countries often rely on foreign-trained nurses to fill gaps in their healthcare systems[1].For instance,as of 2021,over 40%(52 million)of all nurses in the United States(US)were expatriates[2].In the United Kingdom(UK),the percentage of expatriate nurses was even higher,reaching approximately 18%in 2021[3].Owing to globalization and migration,healthcare providers must possess cultural competence to deliver improved care[4,5].Culturally responsive teaching(CRT)is rooted in the idea that culture plays a vital role in shaping people’s behaviors,beliefs,values,and communication styles[6].Furthermore,these cultural factors influence patients’perspectives on health,illness,healing,and their preferences for care and communication[7].By recognizing and embracing these cultural differences,nurses can provide more effective and compassionate care to their diverse patient population[8]. 展开更多
关键词 TEACHING NURSE forceS
下载PDF
Imaging a force field via an optically levitated nanoparticle array
16
作者 Bihu Lv Jiandong Zhang Chuang Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期179-184,共6页
Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nan... Levitated optomechanical systems represent an excellent candidate platform for force and acceleration sensing.We propose a force-sensing protocol utilizing an optically levitated nanoparticle array.In our scheme,N nanoparticles are trapped in an optical cavity using holographic optical tweezers.An external laser drives the cavity,exciting N cavity modes interacting simultaneously with the N nanoparticles.The optomechanical interaction encodes the information of the force acting on each nanoparticle onto the intracavity photons,which can be detected directly at the output ports of the cavity.Consequently,our protocol enables real-time imaging of a force field. 展开更多
关键词 OPTOMECHANICS levitated nanoparticles force field detection
下载PDF
Self-assembly of perovskite nanocrystals:From driving forces to applications
17
作者 Yi Li Fei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期561-578,I0013,共19页
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ... Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs. 展开更多
关键词 SELF-ASSEMBLY Metal halide perovskite NANOCRYSTALS Driving forces
下载PDF
Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
18
作者 刘滢格 李兴财 +2 位作者 王娟 马鑫 孙文海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期368-378,共11页
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ... High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles. 展开更多
关键词 high-voltage current electric field aerosol particles force characteristic
下载PDF
Experimental and numerical simulation study on forced ventilation and dust removal of coal mine heading surface
19
作者 Haotian Zheng Bingyou Jiang +1 位作者 Haoyu Wang Yuannan Zheng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期204-220,共17页
In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar princ... In order to study the problems of unreasonable airflow distribution and serious dust pollution in a heading surface,an experimental platform for forced ventilation and dust removal was built based on the similar principles.Through the similar experiment and numerical simulation,the distribution of airflow field in the roadway and the spatial and temporal evolution of dust pollution under the conditions of forced ventilation were determined.The airflow field in the roadway can be divided into three zones:jet zone,vortex zone and reflux zone.The dust concentration gradually decreases from the head to the rear of the roadway.Under the forced ventilation conditions,there is a unilateral accumulation of dust,with higher dust concentrations away from the ducts.The position of the equipment has an interception effect on the dust.The maximum error between the test value and the simulation result is 12.9%,which verifies the accuracy of the experimental results.The research results can provide theoretical guidance for the application of dust removal technology in coal mine. 展开更多
关键词 Heading surface forced ventilation Airflow field Dust pollution
下载PDF
Distributed Dynamic Load in Structural Dynamics by the Impulse-Based Force Estimation Algorithm
20
作者 Yuantian Qin Yucheng Zhang Vadim V.Silberschmidt 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2865-2891,共27页
This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows t... This paper proposes a novel approach for identifying distributed dynamic loads in the time domain.Using polynomial andmodal analysis,the load is transformed intomodal space for coefficient identification.This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force,thereby achieving dimensionality reduction.The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain.Firstly,the algorithm establishes a recursion scheme based on convolution integral,enabling it to identify loads with a long history and rapidly changing forms over time.Secondly,the algorithm introduces moving mean and polynomial fitting to detrend,enhancing its applicability in load estimation.The aforementioned methodology successfully accomplishes the reconstruction of distributed,instead of centralized,dynamic loads on the continuum in the time domain by utilizing acceleration response.To validate the effectiveness of the method,computational and experimental verification were conducted. 展开更多
关键词 Distributed force estimation time domain DECONVOLUTION RECURSION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部