MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high...MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).展开更多
The establishment of multi-component catalytic systems on Fe2O3 photoanodes presents considerable potential for significantly enhancing the performance of photoelectrochemical water splitting systems. In this study, w...The establishment of multi-component catalytic systems on Fe2O3 photoanodes presents considerable potential for significantly enhancing the performance of photoelectrochemical water splitting systems. In this study, we hydrothermally synthesized a Fe2O3 photoanode. In addition, d-Fe OOH synthesized via dip-coating and hydrothermally prepared h-FeOOH were used as cocatalysts and their synergistic combinations with cobalt phosphate(Co-Pi) were investigated. The synergy between h-FeOOH and Co-Pi was remarkable, whereas that between d-Fe OOH and Co-Pi was negligible. For example, the onset potentials of the Co-Pi/h-FeOOH and Co-Pi/d-FeOOH dual catalysts, were cathodically shifted by 270 and 170 m V, respectively. Moreover, the photocurrent density of the Co-Pi/h-FeOOH/Fe2O3 anode was significantly higher than that of the Co-Pi/d-FeOOH/Fe2O3 one. The synergistic effect of Co-Pi and h-FeOOH could be attributed to the significantly inhibited recombination of surface charges owing to the formation of a p-n junction between β-FeOOH and Fe2O3 and the large contact area between the granular h-FeOOH and Co-Pi. However, the thin amorphous FeOOH layer of the Co-Pi/d-FeOOH/Fe2O3 anode acted as a hole-transfer medium, and weakly promoted the kinetics of the charge transfer process.展开更多
基金supported by research programs of National Natural Science Foundation of China(52101274,51731002)Natural Science Foundation of Shandong Province(No.ZR2020QE011)Youth Top Talent Foundation of Yantai University(2219008).
文摘MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2).
文摘The establishment of multi-component catalytic systems on Fe2O3 photoanodes presents considerable potential for significantly enhancing the performance of photoelectrochemical water splitting systems. In this study, we hydrothermally synthesized a Fe2O3 photoanode. In addition, d-Fe OOH synthesized via dip-coating and hydrothermally prepared h-FeOOH were used as cocatalysts and their synergistic combinations with cobalt phosphate(Co-Pi) were investigated. The synergy between h-FeOOH and Co-Pi was remarkable, whereas that between d-Fe OOH and Co-Pi was negligible. For example, the onset potentials of the Co-Pi/h-FeOOH and Co-Pi/d-FeOOH dual catalysts, were cathodically shifted by 270 and 170 m V, respectively. Moreover, the photocurrent density of the Co-Pi/h-FeOOH/Fe2O3 anode was significantly higher than that of the Co-Pi/d-FeOOH/Fe2O3 one. The synergistic effect of Co-Pi and h-FeOOH could be attributed to the significantly inhibited recombination of surface charges owing to the formation of a p-n junction between β-FeOOH and Fe2O3 and the large contact area between the granular h-FeOOH and Co-Pi. However, the thin amorphous FeOOH layer of the Co-Pi/d-FeOOH/Fe2O3 anode acted as a hole-transfer medium, and weakly promoted the kinetics of the charge transfer process.