Antenna loads can modify the current distribution on the wires, thus improving antenna characteristics in the process. However, it is difficult to calculate appropriate loads of antenna near the ground because in half...Antenna loads can modify the current distribution on the wires, thus improving antenna characteristics in the process. However, it is difficult to calculate appropriate loads of antenna near the ground because in half lossy space there are inherent situational complexities. This paper optimizes loads of antenna near the ground base using a half-determlned genetic algorithm. The numerical results show the HDGA has a quicker convergent speed and a better convergent value than the SGA.展开更多
This paper, using the frequency bandwidth, where both the gain and the VSWR (Voltage Standing Wave Ratio) of a monopole can satisfy the design requirement, as object function, mainly descr...This paper, using the frequency bandwidth, where both the gain and the VSWR (Voltage Standing Wave Ratio) of a monopole can satisfy the design requirement, as object function, mainly describes the process, in which the load locations, the matching network topology and their component values are optimized by the AGA (Adaptive Genetic Algorithm), to achieve a gain more than -2 dB in horizontal direction and a VSWR less than 3 in bandwidth as wide as possible. Moreover the design results are presented for monopoles with two concentrated loadings. It shows that the AGA is an effective method for designing wideband antennas.展开更多
文摘Antenna loads can modify the current distribution on the wires, thus improving antenna characteristics in the process. However, it is difficult to calculate appropriate loads of antenna near the ground because in half lossy space there are inherent situational complexities. This paper optimizes loads of antenna near the ground base using a half-determlned genetic algorithm. The numerical results show the HDGA has a quicker convergent speed and a better convergent value than the SGA.
文摘This paper, using the frequency bandwidth, where both the gain and the VSWR (Voltage Standing Wave Ratio) of a monopole can satisfy the design requirement, as object function, mainly describes the process, in which the load locations, the matching network topology and their component values are optimized by the AGA (Adaptive Genetic Algorithm), to achieve a gain more than -2 dB in horizontal direction and a VSWR less than 3 in bandwidth as wide as possible. Moreover the design results are presented for monopoles with two concentrated loadings. It shows that the AGA is an effective method for designing wideband antennas.