Experiment and dynamic simulation were combined to obtain the loads on bicycle frame. A dynamic model of body-bicycle system was built in ADAMS. Then the body gestures under different riding conditions were captured b...Experiment and dynamic simulation were combined to obtain the loads on bicycle frame. A dynamic model of body-bicycle system was built in ADAMS. Then the body gestures under different riding conditions were captured by a motion analysis system. Dynamic simulation was carried out after the data of body motions were input into the simulation system in ADAMS and a series of loads that the body applied on head tube, seat pillar and bottom bracket were obtained. The results show that the loads on flame and their distribution are apparently different under various riding conditions. Finally, finite element analysis was done in ANSYS, which showed that the stress and its distribution on frame were apparently different when the flame was loaded according to the bicycle testing standard and simulation respectively. An efficient way to obtain load on bicycle flame accurately was proposed, which is sig- nificant for the safety of cycling and will also be the basis for the bicycle design of digitalization, lightening and cus- tomization.展开更多
When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test...When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load–time histories is then deduced. Measured data from the Beijing–Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load–time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.展开更多
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to high...Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behavior in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modem residential buildings are proposed for the testing of LSF walls.展开更多
基金Supported by Special Fund Project for Technology Innovation of Tianjin (No. 10FDZDGX00500)Tianjin Product Quality Inspection Technology Research Institute (No. 11-03)
文摘Experiment and dynamic simulation were combined to obtain the loads on bicycle frame. A dynamic model of body-bicycle system was built in ADAMS. Then the body gestures under different riding conditions were captured by a motion analysis system. Dynamic simulation was carried out after the data of body motions were input into the simulation system in ADAMS and a series of loads that the body applied on head tube, seat pillar and bottom bracket were obtained. The results show that the loads on flame and their distribution are apparently different under various riding conditions. Finally, finite element analysis was done in ANSYS, which showed that the stress and its distribution on frame were apparently different when the flame was loaded according to the bicycle testing standard and simulation respectively. An efficient way to obtain load on bicycle flame accurately was proposed, which is sig- nificant for the safety of cycling and will also be the basis for the bicycle design of digitalization, lightening and cus- tomization.
基金Supported by National Natural Science Foundation of China(Grant No.U1134201)
文摘When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load–time histories is then deduced. Measured data from the Beijing–Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load–time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.
文摘Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behavior in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modem residential buildings are proposed for the testing of LSF walls.