In this paper,the simultaneous resonance of a ferromagnetic thin plate in a time-varying magnetic field,having axial speed and being subjected to a periodic line load,is studied.Based on the large deflection theory of...In this paper,the simultaneous resonance of a ferromagnetic thin plate in a time-varying magnetic field,having axial speed and being subjected to a periodic line load,is studied.Based on the large deflection theory of thin plates and electromagnetic field theory,the nonlinear vibration differential equation of the plate is obtained by using the Hamilton′s principle and the Galerkin method.Then the boundary condition in which the longer opposite sides are clamped and hinged is considered.The dimensionless nonlinear differential equations are solved by using the method of multiple scales,and the analytical solution is given.In addition,the stability analysis is also carried out by using Lyapunov stability theory.Through numerical analysis,the variation curves of system resonance amplitude with frequency tuning parameter,magnetic field strength and external excitation amplitude are obtained.Different parameters that have significant effects on the response of the system,such as the thickness,the axial velocity,the magnetic field intensity,the position,and the frequency of external excitation,are considered and analyzed.The results show that the system has multiple solution regions and obvious nonlinear coupled characteristics.展开更多
In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on...In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.展开更多
Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of...Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.展开更多
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of v...The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear li...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is consid- ered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented.展开更多
Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with...Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with thin wall respectively. For simulating the deformation of the lining washer under equiaxial pressure, the modified Lagrangian finite element analysis is applied on the 228 triangular elements. Under assembly pressure, the plastoelastic deformation of both the lining washer and the outer body are studied in terms of Tresca's yield criterion and the limitation of the plastic deformation is presented when the two components are assembled into one unit. For the production of this kind of bottle cover, experiments are carried out by carefully measuring the changes of the diameter of lining washer as well as that of the outer body. It is shown that results from the experiments have a good agreement with the theoretical calculation and the maximum value of the allowable pressure has successfully been used in the design of newly developed bottle cap production system.展开更多
This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dy...This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.展开更多
The dynamic response of an infinite Euler–Bernoulli beam resting on Pasternak foundation under inclined harmonic line loads is developed in this study in a closed-form solution.The conventional Pasternak foundation i...The dynamic response of an infinite Euler–Bernoulli beam resting on Pasternak foundation under inclined harmonic line loads is developed in this study in a closed-form solution.The conventional Pasternak foundation is modeled by two parameters wherein the second parameter can account for the actual shearing effect of soils in the vertical direction.Thus,it is more realistic than the Winkler model,which only represents compressive soil resistance.However,the Pasternak model does not consider the tangential interaction between the bottom of the beam and the foundation;hence,the beam under inclined loads cannot be considered in the model.In this study,a series of horizontal springs is diverted to the face between the bottom of the beam and the foundation to address the limitation of the Pasternak model,which tends to disregard the tangential interaction between the beam and the foundation.The horizontal spring reaction is assumed to be proportional to the relative tangential displacement.The governing equation can be deduced by theory of elasticity and Newton’s laws,combined with the linearly elastic constitutive relation and the geometric equation of the beam body under small deformation condition.Double Fourier transformation is used to simplify the geometric equation into an algebraic equation,thereby conveniently obtaining the analytical solution in the frequency domain for the dynamic response of the beam.Double Fourier inverse transform and residue theorem are also adopted to derive the closed-form solution.The proposed solution is verified by comparing the degraded solution with the known results and comparing the analytical results with numerical results using ANSYS.Numerical computations of distinct cases are provided to investigate the effects of the angle of incidence and shear stiffness on the dynamic response of the beam.Results are realistic and can be used as reference for future engineering designs.展开更多
This study accesses the effects of shoe heel heights on loading, muscle activity, and plantar foot pressure of trans-tibial amputees during standing. Five male subjects with unilateral trans-tibial amputation voluntee...This study accesses the effects of shoe heel heights on loading, muscle activity, and plantar foot pressure of trans-tibial amputees during standing. Five male subjects with unilateral trans-tibial amputation volunteered to participate in this study. Three pairs of shoes with zero, 20 mm, and 40 mm heel heights were used. The loading line of the prosthetic side, the plantar foot pressure, and the surface electromyography (EMG) of 10 muscles were simultaneously recorded. With increasing shoe heel heights during standing, the loading line of the prosthetic side shifted from the anterior to the posterior side of the knee center, the peak pressure was increased in the medial forefoot region, and the peak pressure was reduced in the heel region. The EMG of the medial and lateral gastrocnemius of the sound leg almost doubled and that of the rectus fomris, vastus lateralis, and vastus medialis of the prosthetic side increased to different extents with in- creasing heel heights from zero to 40 mm. These results show a high correlation with human physical be- havior. Changing of the heel heights for trans-tibial amputees during standing actually had similar effects to altering the prosthetic sagittal alignment. The results suggest that an alignment change is necessary to accommodate heel height changes and that prosthesis users should be cautious when choosing shoes.展开更多
The maximum demand of power utilization is increasing exponentially from base load to peak load in day to day life.This power demand may be either industrial usage or household applications.To meet this high maximum p...The maximum demand of power utilization is increasing exponentially from base load to peak load in day to day life.This power demand may be either industrial usage or household applications.To meet this high maximum power demand by the consumer,one of the options is the integration of renewable energy resources with conventional power generation methods.In the present scenario,wind energy system is one of the methods to generate power in connection with the conventional power systems.When the load on the conventional grid system increases,various bus voltages of the system tend to decrease,causing serious voltage drop or voltage instability within the system.In view of this,identification of weak buses within the system has become necessary.This paper presents the line indices method to identify these weak buses,so that some corrective action may be taken to compensate for this drop in voltage.An attempt has been made to compensate these drops in voltages by integration of renewable energy systems.The wind energy system at one of the bus in the test system is integrated and the performance of the system is verified by calculating the power flow(PF)using the power system analysis tool box(PSAT)and line indices of the integrated test system.The PF and load flow results are used to calculate line indices for the IEEE-14 bus test system which is simulated on PSAT.展开更多
基金National Natural Science Foundation of China under Grant Nos.12172321 and 11472239Hebei Provincial Natural Science Foundation of China under Grant No.A2020203007Hebei Provincial Graduate Innovation Foundation of China under Grant No.CXZZBS2022146。
文摘In this paper,the simultaneous resonance of a ferromagnetic thin plate in a time-varying magnetic field,having axial speed and being subjected to a periodic line load,is studied.Based on the large deflection theory of thin plates and electromagnetic field theory,the nonlinear vibration differential equation of the plate is obtained by using the Hamilton′s principle and the Galerkin method.Then the boundary condition in which the longer opposite sides are clamped and hinged is considered.The dimensionless nonlinear differential equations are solved by using the method of multiple scales,and the analytical solution is given.In addition,the stability analysis is also carried out by using Lyapunov stability theory.Through numerical analysis,the variation curves of system resonance amplitude with frequency tuning parameter,magnetic field strength and external excitation amplitude are obtained.Different parameters that have significant effects on the response of the system,such as the thickness,the axial velocity,the magnetic field intensity,the position,and the frequency of external excitation,are considered and analyzed.The results show that the system has multiple solution regions and obvious nonlinear coupled characteristics.
基金Project(51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the Funds for New Century Excellent Talents in University of China+1 种基金Project(12TD007)supported by the Scientific Research Innovation Team Program of Sichuan Colleges and Universities,ChinaProject(2014TD0025)supported by the Youth Scientific Research Innovation Team Program of Sichuan Province,China
文摘In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.
文摘Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(KLE-TJGE-C1301)supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education(Tongji University)under the International Cooperation and Exchange Program,China
文摘The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.
基金The project supported by the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is consid- ered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented.
基金This project is supported by Provincial Natural Science Fundation of Hei-longjiang, China (No.E0311) and Provincial Key Project of Heilingjiang,China (No.G99A13-1).
文摘Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with thin wall respectively. For simulating the deformation of the lining washer under equiaxial pressure, the modified Lagrangian finite element analysis is applied on the 228 triangular elements. Under assembly pressure, the plastoelastic deformation of both the lining washer and the outer body are studied in terms of Tresca's yield criterion and the limitation of the plastic deformation is presented when the two components are assembled into one unit. For the production of this kind of bottle cover, experiments are carried out by carefully measuring the changes of the diameter of lining washer as well as that of the outer body. It is shown that results from the experiments have a good agreement with the theoretical calculation and the maximum value of the allowable pressure has successfully been used in the design of newly developed bottle cap production system.
文摘This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.
基金financially supported by the National Key Research and Development Program of China (no.2016YFC0800206)the National Natural Science Foundation of China (nos.51778260, 51378234, 51678465)
文摘The dynamic response of an infinite Euler–Bernoulli beam resting on Pasternak foundation under inclined harmonic line loads is developed in this study in a closed-form solution.The conventional Pasternak foundation is modeled by two parameters wherein the second parameter can account for the actual shearing effect of soils in the vertical direction.Thus,it is more realistic than the Winkler model,which only represents compressive soil resistance.However,the Pasternak model does not consider the tangential interaction between the bottom of the beam and the foundation;hence,the beam under inclined loads cannot be considered in the model.In this study,a series of horizontal springs is diverted to the face between the bottom of the beam and the foundation to address the limitation of the Pasternak model,which tends to disregard the tangential interaction between the beam and the foundation.The horizontal spring reaction is assumed to be proportional to the relative tangential displacement.The governing equation can be deduced by theory of elasticity and Newton’s laws,combined with the linearly elastic constitutive relation and the geometric equation of the beam body under small deformation condition.Double Fourier transformation is used to simplify the geometric equation into an algebraic equation,thereby conveniently obtaining the analytical solution in the frequency domain for the dynamic response of the beam.Double Fourier inverse transform and residue theorem are also adopted to derive the closed-form solution.The proposed solution is verified by comparing the degraded solution with the known results and comparing the analytical results with numerical results using ANSYS.Numerical computations of distinct cases are provided to investigate the effects of the angle of incidence and shear stiffness on the dynamic response of the beam.Results are realistic and can be used as reference for future engineering designs.
基金Supported by the National Natural Science Foundation of China(No. 50575122)
文摘This study accesses the effects of shoe heel heights on loading, muscle activity, and plantar foot pressure of trans-tibial amputees during standing. Five male subjects with unilateral trans-tibial amputation volunteered to participate in this study. Three pairs of shoes with zero, 20 mm, and 40 mm heel heights were used. The loading line of the prosthetic side, the plantar foot pressure, and the surface electromyography (EMG) of 10 muscles were simultaneously recorded. With increasing shoe heel heights during standing, the loading line of the prosthetic side shifted from the anterior to the posterior side of the knee center, the peak pressure was increased in the medial forefoot region, and the peak pressure was reduced in the heel region. The EMG of the medial and lateral gastrocnemius of the sound leg almost doubled and that of the rectus fomris, vastus lateralis, and vastus medialis of the prosthetic side increased to different extents with in- creasing heel heights from zero to 40 mm. These results show a high correlation with human physical be- havior. Changing of the heel heights for trans-tibial amputees during standing actually had similar effects to altering the prosthetic sagittal alignment. The results suggest that an alignment change is necessary to accommodate heel height changes and that prosthesis users should be cautious when choosing shoes.
文摘The maximum demand of power utilization is increasing exponentially from base load to peak load in day to day life.This power demand may be either industrial usage or household applications.To meet this high maximum power demand by the consumer,one of the options is the integration of renewable energy resources with conventional power generation methods.In the present scenario,wind energy system is one of the methods to generate power in connection with the conventional power systems.When the load on the conventional grid system increases,various bus voltages of the system tend to decrease,causing serious voltage drop or voltage instability within the system.In view of this,identification of weak buses within the system has become necessary.This paper presents the line indices method to identify these weak buses,so that some corrective action may be taken to compensate for this drop in voltage.An attempt has been made to compensate these drops in voltages by integration of renewable energy systems.The wind energy system at one of the bus in the test system is integrated and the performance of the system is verified by calculating the power flow(PF)using the power system analysis tool box(PSAT)and line indices of the integrated test system.The PF and load flow results are used to calculate line indices for the IEEE-14 bus test system which is simulated on PSAT.