This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sands...This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.展开更多
Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading charac...Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading characteristics are different from the loading ones, therefore there is hysteresis between the unloading and loading curves. Compressive hysteresis is the main factor that causes sealing hysteresis. The leakage rate of PTFE complies with the power law before it enters the relatively stable region. Lastly, the effect of working pressure on the compressive and sealing characteristics is discussed. The experimental results show that the working pressure has little effect on compressive deformation but has a great influence on leakage rate.展开更多
With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure...With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.展开更多
The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and f...The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.展开更多
This paper is devoted to the nonlinear stress and strain analysis oftunneling and working conditions of Wanjiazhai Division Project No.7 Tunnel in Shanxi province ofChina. The initial geological stress of loess was si...This paper is devoted to the nonlinear stress and strain analysis oftunneling and working conditions of Wanjiazhai Division Project No.7 Tunnel in Shanxi province ofChina. The initial geological stress of loess was simulated by grading fill; the theory of unloadingproposed by Duncan and boundary stress of elasticity were used to calculate the excavation of thetunnel; Goodman joint elements were applied to simulate the joints of the liners; both loading andunloading tests have been performed to determine the parameters of Duncan-Chang's model and thecalculated results were compared; Terzaghi' s theory on loosening earth pressure was applied. Manyworking conditions were analyzed and some reasonable results were obtained. Based on the analyses,reparative measures were proposed and completed. The tunnel has functioned well since October, 2001.展开更多
Using an MTS 815 testing machine,the deformation and failure behavior of a rock-coal-rock combined body containing a weak coal interlayer has been investigated and described in this paper.Uniaxial loading leads to the...Using an MTS 815 testing machine,the deformation and failure behavior of a rock-coal-rock combined body containing a weak coal interlayer has been investigated and described in this paper.Uniaxial loading leads to the appearance of mixed cracks in the coal body which induce instability and lead to bursts in coal.If the mixed crack propagates at a sufficiently high speed to carry enough energy to damage the roof rock,then coal and rock bursts may occur-this is the main mechanism whereby coal bumps or coal and rock bursts occur after excavation unloading.With increasing confining pressure,the failure strength of a rock-coal-rock combined body gradually increases,and the failure mechanism of the coal interlayer also changes,from mixed crack damage under low confining pressures,to parallel crack damage under medium confining pressures,and finally to single shear crack damage or integral mixed section damage under high confining pressures.In general,it is shown that a weak coal interlayer changes the form of overall coal damage in a rock-coal-rock combined body and reduces the overall stability of a coal body.Therefore,the whole failure behavior of a rock-coal-rock combined body in large cutting height working faces is controlled by these mechanisms.展开更多
A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for...A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.展开更多
In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response a...In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response and pressure of the surrounding rock and the mechanical characteristics of bolts of the tunnel. The results suggest that open zones appear at arch and invert where joints open up, when layered stratum is horizontal, or when the dip angle of in- clined bedding is small. Open zones occur perpendicular to a joint. The failure mode is bending disjunction at the arch tain shear displacement, and lead to obvious geological bedding unsymmetrical load. The failure mode is shear damage. For the joint dip angle in the range of 75-90°, the failure mode is flexural crushing at the wall and vertical shear rup- ture above the arch. The restraining effect of two sides weakens for vertical dip. On the whole, shear failure instabilitytrend would occur and the tunnel collapses evenly. When the angle between the bolt and structure plane is greater than 23°, bolts can enhance the shearing stiffness of joint plane. Unfortunately, in the general purpose graph of tunnel for 250 km/h of passenger dedicated lines, the bolts have equal length and spacing. The rationale behind this is worthy offurther study. For inclined bedding, the surrounding rock pressure at the left wall is more than that at the right wall. In addition, lining is likely to be damaged at left shoulder and side wall. With the dip angle increasing, the unsymmetrical load gradually achieves symmetry. Asymmetry design for support is recommended to reduce the unsymmetrical load on lining disturbed by excavation.展开更多
A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is u...A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52274118 and 52274145)the Construction Project of Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone(No.2021sfQ18).
文摘This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.
基金Funded by the Fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants(No.SKLTSCP1210)
文摘Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading characteristics are different from the loading ones, therefore there is hysteresis between the unloading and loading curves. Compressive hysteresis is the main factor that causes sealing hysteresis. The leakage rate of PTFE complies with the power law before it enters the relatively stable region. Lastly, the effect of working pressure on the compressive and sealing characteristics is discussed. The experimental results show that the working pressure has little effect on compressive deformation but has a great influence on leakage rate.
基金the National Natural Science Foundation of China(Nos.52374218,52174122 and 52374094)Outstanding Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150).
文摘With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.
基金Projects 50534040 supported by the National Natural Science Foundation of ChinaBK2007040 by the Natural Science Foundation of Jiangsu ProvinceCX08B_103Z by the Post Graduate Research Projects of Jiangsu Province
文摘The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.
文摘This paper is devoted to the nonlinear stress and strain analysis oftunneling and working conditions of Wanjiazhai Division Project No.7 Tunnel in Shanxi province ofChina. The initial geological stress of loess was simulated by grading fill; the theory of unloadingproposed by Duncan and boundary stress of elasticity were used to calculate the excavation of thetunnel; Goodman joint elements were applied to simulate the joints of the liners; both loading andunloading tests have been performed to determine the parameters of Duncan-Chang's model and thecalculated results were compared; Terzaghi' s theory on loosening earth pressure was applied. Manyworking conditions were analyzed and some reasonable results were obtained. Based on the analyses,reparative measures were proposed and completed. The tunnel has functioned well since October, 2001.
基金supported by the Special Funds for Major State Basic Research Project(Nos.2011CB201201 and 2010CB732002)the National Natural Science Foundation of China(Nos.11102225and51374215)the National Excellent Doctoral Dissertation of China(No.201030)
文摘Using an MTS 815 testing machine,the deformation and failure behavior of a rock-coal-rock combined body containing a weak coal interlayer has been investigated and described in this paper.Uniaxial loading leads to the appearance of mixed cracks in the coal body which induce instability and lead to bursts in coal.If the mixed crack propagates at a sufficiently high speed to carry enough energy to damage the roof rock,then coal and rock bursts may occur-this is the main mechanism whereby coal bumps or coal and rock bursts occur after excavation unloading.With increasing confining pressure,the failure strength of a rock-coal-rock combined body gradually increases,and the failure mechanism of the coal interlayer also changes,from mixed crack damage under low confining pressures,to parallel crack damage under medium confining pressures,and finally to single shear crack damage or integral mixed section damage under high confining pressures.In general,it is shown that a weak coal interlayer changes the form of overall coal damage in a rock-coal-rock combined body and reduces the overall stability of a coal body.Therefore,the whole failure behavior of a rock-coal-rock combined body in large cutting height working faces is controlled by these mechanisms.
基金sponsored by projects (Grant Nos. 50978172, 51078318) of the National Natural Science Foundation of ChinaProject (Grant No. 10-0667) supposed by the New Century Excellent Talents in University
文摘A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.
基金supported by the National Natural Science Foundation of China (No. 51078318)
文摘In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response and pressure of the surrounding rock and the mechanical characteristics of bolts of the tunnel. The results suggest that open zones appear at arch and invert where joints open up, when layered stratum is horizontal, or when the dip angle of in- clined bedding is small. Open zones occur perpendicular to a joint. The failure mode is bending disjunction at the arch tain shear displacement, and lead to obvious geological bedding unsymmetrical load. The failure mode is shear damage. For the joint dip angle in the range of 75-90°, the failure mode is flexural crushing at the wall and vertical shear rup- ture above the arch. The restraining effect of two sides weakens for vertical dip. On the whole, shear failure instabilitytrend would occur and the tunnel collapses evenly. When the angle between the bolt and structure plane is greater than 23°, bolts can enhance the shearing stiffness of joint plane. Unfortunately, in the general purpose graph of tunnel for 250 km/h of passenger dedicated lines, the bolts have equal length and spacing. The rationale behind this is worthy offurther study. For inclined bedding, the surrounding rock pressure at the left wall is more than that at the right wall. In addition, lining is likely to be damaged at left shoulder and side wall. With the dip angle increasing, the unsymmetrical load gradually achieves symmetry. Asymmetry design for support is recommended to reduce the unsymmetrical load on lining disturbed by excavation.
基金This work was supported by the Key Laboratory of Safety and High-Efficiency Coal Mining,Ministry of Education,Anhui University of Science and Technology(JYBSYS2020209)the Natural Science Research Project of Anhui Provincial Department of Education(KJHS2020B13)the Huangshan University School Level Talent Launch Project(No.2020XKJQ001).
文摘A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.