期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied 被引量:6
1
作者 Pei-Yun Shu Hung-Hui Li +1 位作者 Tai-Tien Wang Tzuu-Hsing Ueng 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期545-554,共10页
Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the inciden... Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar(SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2-4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding.Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure. 展开更多
关键词 Dynamic strength Failure pattern Rock with single planar loading rate Angle of load applied
下载PDF
Model test of helical angle effect on coal loading performance of shear drum 被引量:4
2
作者 Kuidong Gao Changlong Du +1 位作者 Songyong Liu Lin Fu 《International Journal of Mining Science and Technology》 2012年第2期165-168,共4页
The work presented in this paper focuses on improving coal loading performance of shear drum.Employing the similarity theory,we carried out a dimensional analysis of the correlation parameters which influence coal loa... The work presented in this paper focuses on improving coal loading performance of shear drum.Employing the similarity theory,we carried out a dimensional analysis of the correlation parameters which influence coal loading performance of shear drum.On the basis of similarity criterion,proportional relationship between the model and the prototype was taken on the condition of taking 1/3 as the similarity coefficient.Besides taking 1600 mm drum as the prototype,four helical angle models of shearer drums(15°,18°,21°,24°) were developed.Simultaneously,based on an established cutting test-bed,coal loading performance tests for the four drums were carried out at the same drum rotational and haulage speeds.After analyzing the data of coal-loading performance and torque,we concluded that:both the coal loading performance and torque vary along the track of the parabola with the opening side facing downwards;the best coal loading performance arises when the helical angle is at 19.3°,while the biggest torque arises at 22.1°;and the coal loading performance had nonlinear relationship with the torque. 展开更多
关键词 Shear drumModel testSimilarity theoryCoal loading performanceHelical angle
下载PDF
Relationship between loading angle and displacing angle in steel bolt shearing
3
作者 Yu CHEN Ping CAO +1 位作者 Ke-ping ZHOU Yun TENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期876-882,共7页
When subjected to shear loading condition,a steel rock bolt will become bent in the field close to the loading point in situ.The bolt is deformed as the joint displacement increases,which can mobilize a normal load an... When subjected to shear loading condition,a steel rock bolt will become bent in the field close to the loading point in situ.The bolt is deformed as the joint displacement increases,which can mobilize a normal load and a shear load on the bolt accordingly.In this work,the relationship analysis between the displacing angle and loading angle is carried out.By considering elastic andplastic states of rock bolt during shearing,the rotation of bolt extremity can be calculated analytically.Thus,the loading angle isobtained from displacing angle.The verification of analytical results and laboratory results from reference research implies that theanalytical method is correct and working.In terms of in-situ condition,the direction of the load acting on steel bolt can be predictedwell according to the direction of the deformed rock bolt with respect to original bolt axis. 展开更多
关键词 steel rock bolt SHEAR displacing angle loading angle
下载PDF
Shear deformable finite beam elements for composite box beams 被引量:2
4
作者 Nam-Il Kim Dong-Ho Choi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期223-240,共18页
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated compo... The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated. 展开更多
关键词 Thin-walled Composite box beam Deflection Twisting angle Buckling load Shear deformation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部