Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy...Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths.展开更多
The unloading effect by excavation may cause irreversible and severe damage to the surrounding rock masses in underground engineering.In this paper,both conventional triaxial compression(CTC)tests and triaxial unloadi...The unloading effect by excavation may cause irreversible and severe damage to the surrounding rock masses in underground engineering.In this paper,both conventional triaxial compression(CTC)tests and triaxial unloading confining pressure(TUCP)tests were conducted on fine-grained granite to study its triaxial compression failure processes due to unloading.Based on the crack volumetric strain(CVS)method,the crack axial strain(CAS)method and crack radial area strain(CRAS)method were proposed to identify the failure precursor information(including stress thresholds and axial strain at the initiation point of crack connectivity stage)during the rock failure processes.The results of the CTC tests show that the stable crack development stressσsd,unstable crack development stressσusd,and crack connectivity stressσct identified by the CAS method are 6%,74%–84%,and 86%–97%of the peak stress,respectively.For the TUCP cases,as the confining pressure increases,the stress thresholds,axial pressure at failure and axial strain at the start of the crack connectivity stage increase,while the time ratio of the crack connectivity stage to the entire unloading stage decreases.This indicates that fine-grained granite is prone to generate more cracks and leads to fail suddenly under high confining pressure.Furthermore,this new method demonstrates that the point at which the derivative of the radial crack area strain transitions from stable to a sudden increase or decrease is defined as the precursor point of rock failure.The results of axial strain at the starting point of the crack connectivity stage are very close to those predicted by the AE method,withβ1 no more than 11%.展开更多
Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading charac...Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading characteristics are different from the loading ones, therefore there is hysteresis between the unloading and loading curves. Compressive hysteresis is the main factor that causes sealing hysteresis. The leakage rate of PTFE complies with the power law before it enters the relatively stable region. Lastly, the effect of working pressure on the compressive and sealing characteristics is discussed. The experimental results show that the working pressure has little effect on compressive deformation but has a great influence on leakage rate.展开更多
基金Project(51324744)supported by the National Natural Science Foundation of ChinaProject(71380100006)supported by the Innovation Foundation of Doctoral Student in Hunan Province,China
文摘Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths.
基金supported by the National Natural Science Foundation of China(No.52074349).
文摘The unloading effect by excavation may cause irreversible and severe damage to the surrounding rock masses in underground engineering.In this paper,both conventional triaxial compression(CTC)tests and triaxial unloading confining pressure(TUCP)tests were conducted on fine-grained granite to study its triaxial compression failure processes due to unloading.Based on the crack volumetric strain(CVS)method,the crack axial strain(CAS)method and crack radial area strain(CRAS)method were proposed to identify the failure precursor information(including stress thresholds and axial strain at the initiation point of crack connectivity stage)during the rock failure processes.The results of the CTC tests show that the stable crack development stressσsd,unstable crack development stressσusd,and crack connectivity stressσct identified by the CAS method are 6%,74%–84%,and 86%–97%of the peak stress,respectively.For the TUCP cases,as the confining pressure increases,the stress thresholds,axial pressure at failure and axial strain at the start of the crack connectivity stage increase,while the time ratio of the crack connectivity stage to the entire unloading stage decreases.This indicates that fine-grained granite is prone to generate more cracks and leads to fail suddenly under high confining pressure.Furthermore,this new method demonstrates that the point at which the derivative of the radial crack area strain transitions from stable to a sudden increase or decrease is defined as the precursor point of rock failure.The results of axial strain at the starting point of the crack connectivity stage are very close to those predicted by the AE method,withβ1 no more than 11%.
基金Funded by the Fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants(No.SKLTSCP1210)
文摘Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading characteristics are different from the loading ones, therefore there is hysteresis between the unloading and loading curves. Compressive hysteresis is the main factor that causes sealing hysteresis. The leakage rate of PTFE complies with the power law before it enters the relatively stable region. Lastly, the effect of working pressure on the compressive and sealing characteristics is discussed. The experimental results show that the working pressure has little effect on compressive deformation but has a great influence on leakage rate.
基金supported by the National Natural Science Foundation of China(No.41877272)the Fundamental Research Funds for the Central Universities,China(No.2242022k30054)。
基金Projects(U20A20266,51874202) supported by the National Natural Science Foundation of ChinaProjects(2022YFSY0007,2021YFH0010) supported by the Scientific and Technological Research Projects in Sichuan Province,China。