A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at ...A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at random and single molecular state in the ultrasonic field and the ultrasonic wave favors the diffusion and adsorption processes of dye molecules. As a result, the introduction of ultrasonic technique at room temperature leads to faster and more well-distributed dye adsorption on TiO2 as well as higher cell efficiency than regular deposition, thus the fabrication time is markedly reduced. It is found that the device based on 40 kHz ultrasonic (within 1 h) with N719 exhibits a Voc of 789 mV, Jsc of 14.94 mA]cm2 and fill factor (FF) of 69.3, yielding power conversion efficiency (PCE) of 8.16%, which is higher than device regularly dyed for 12 h (PCE = 8.06%). In addition, the DSSC devices obtain the best efficiency (PCE = 8.68%) when the ultrasonic deposition time increases to 2.5 h. The DSSCs fabricated via ultrasonic technique presents more dye loading, larger photocurrent, less charge recombination and higher photovoltage. The charge extraction and electron impedance spectroscopy (EIS) were performed to understand the influence of ultrasonic technique on the electron recombination and performance of DSSCs.展开更多
A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conven...A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conventional Gilbert-type mixer which is based on RF current-commutating, the load impedance in this proposed mixer is controlled by the LO signal, and it has only two stacked transistors at each branch which is suitable for low voltage applications. The mixer was designed and fabricated in 0.18 tam CMOS process for 2.4 GHz ISM band applications. With an input of 2.44 GHz RF signal and 2.442 GHz LO signal, the measurement specifications of the proposed mixer are: the conversion gain (Gc) is 5.3 dB, the input-referred third-order intercept point (PIIP3) is 4.6 dBm, the input-referred 1 dB compression point (P1dB) is --7.4 dBm, and the single-sideband noise figure (NFSSB) is 21.7 dB.展开更多
For the inverse designs of centrifugal and mixed-flow pump impellers,clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the ...For the inverse designs of centrifugal and mixed-flow pump impellers,clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance.In this paper,to provide a better qualitative insight into the generation mechanism of secondary flows in the impeller,a simple kinematic equation is derived based on the ideal assumptions,which indicates that the potential rothalpy gradient(PRG)is the most important dynamic source that actively induces secondary vortical flows.Induced by the natural adverse PRG on the S1 and S2 stream surfaces,two typical secondary flows,H-S and P-S secondary flows,are clearly presented.To specially suppress these typical secondary flows,a general alternate loading technique(GALT)is proposed,aiming to adjust the real blade loadingδp to control the PRG features.At the blade fore part,theδp on the hub streamline should be slowly increased to avoid breakneck growth of the potential rothalpy to reduce adverse streamwise PRG on the S2 streamsurface.At the blade middle part,theδp should be moderately decreased to reduce adverse streamwise PRG on the S1 streamsurface.At the blade aft part,the difference in theδp between the shroud and hub streamlines should be decreased faster to control the exit uniformity.By applying the GALT to the impeller designs of three typical pump types in hydraulic engineering,the organizational effect of the PRG on fundamental flow structures is proven.The GALT can effectively control the PRG distributions and suppress the secondary flows,thereby widening the pump’s high-efficiency zone,improving flow uniformity and suppressing pressure fluctuations.Compared with the current Z-G method and the ALT,the GALT can meet the requirements of"de-experience"better,thereby enabling the designers to obtain good products explicitly and quickly.展开更多
基金supported by the Science Fund for Creative Research Groups(21421004)the National Basic Research 973 Program(2013CB733700)NSFC/China(21172073,21372082,21572062 and 91233207)
文摘A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at random and single molecular state in the ultrasonic field and the ultrasonic wave favors the diffusion and adsorption processes of dye molecules. As a result, the introduction of ultrasonic technique at room temperature leads to faster and more well-distributed dye adsorption on TiO2 as well as higher cell efficiency than regular deposition, thus the fabrication time is markedly reduced. It is found that the device based on 40 kHz ultrasonic (within 1 h) with N719 exhibits a Voc of 789 mV, Jsc of 14.94 mA]cm2 and fill factor (FF) of 69.3, yielding power conversion efficiency (PCE) of 8.16%, which is higher than device regularly dyed for 12 h (PCE = 8.06%). In addition, the DSSC devices obtain the best efficiency (PCE = 8.68%) when the ultrasonic deposition time increases to 2.5 h. The DSSCs fabricated via ultrasonic technique presents more dye loading, larger photocurrent, less charge recombination and higher photovoltage. The charge extraction and electron impedance spectroscopy (EIS) were performed to understand the influence of ultrasonic technique on the electron recombination and performance of DSSCs.
基金Project(61166004) supported by the National Natural Science Foundation of ChinaProject(09ZCGHHZ00200) supported by the International Scientific and Technological Cooperation Program of Science and Technology Plan of Tianjin,ChinaProject(UF10028Y)supported by the Doctoral Scientific Research Foundation for Guilin University of Electronic Technology,China
文摘A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conventional Gilbert-type mixer which is based on RF current-commutating, the load impedance in this proposed mixer is controlled by the LO signal, and it has only two stacked transistors at each branch which is suitable for low voltage applications. The mixer was designed and fabricated in 0.18 tam CMOS process for 2.4 GHz ISM band applications. With an input of 2.44 GHz RF signal and 2.442 GHz LO signal, the measurement specifications of the proposed mixer are: the conversion gain (Gc) is 5.3 dB, the input-referred third-order intercept point (PIIP3) is 4.6 dBm, the input-referred 1 dB compression point (P1dB) is --7.4 dBm, and the single-sideband noise figure (NFSSB) is 21.7 dB.
基金supported by the National Natural Science Foundation of China(Grant Nos.51836010,51779258,51839001)the National Key Research and Development Program of China(Grant No.2018YFB0606103)the Beijing Natural Science Foundation of China(Grant No.3182018)。
文摘For the inverse designs of centrifugal and mixed-flow pump impellers,clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance.In this paper,to provide a better qualitative insight into the generation mechanism of secondary flows in the impeller,a simple kinematic equation is derived based on the ideal assumptions,which indicates that the potential rothalpy gradient(PRG)is the most important dynamic source that actively induces secondary vortical flows.Induced by the natural adverse PRG on the S1 and S2 stream surfaces,two typical secondary flows,H-S and P-S secondary flows,are clearly presented.To specially suppress these typical secondary flows,a general alternate loading technique(GALT)is proposed,aiming to adjust the real blade loadingδp to control the PRG features.At the blade fore part,theδp on the hub streamline should be slowly increased to avoid breakneck growth of the potential rothalpy to reduce adverse streamwise PRG on the S2 streamsurface.At the blade middle part,theδp should be moderately decreased to reduce adverse streamwise PRG on the S1 streamsurface.At the blade aft part,the difference in theδp between the shroud and hub streamlines should be decreased faster to control the exit uniformity.By applying the GALT to the impeller designs of three typical pump types in hydraulic engineering,the organizational effect of the PRG on fundamental flow structures is proven.The GALT can effectively control the PRG distributions and suppress the secondary flows,thereby widening the pump’s high-efficiency zone,improving flow uniformity and suppressing pressure fluctuations.Compared with the current Z-G method and the ALT,the GALT can meet the requirements of"de-experience"better,thereby enabling the designers to obtain good products explicitly and quickly.