Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scal...Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.展开更多
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s...In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.展开更多
On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, th...On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, that elastic distortion occurs when the pile is loaded, that the displacement of pile is in accord with that of the soil, and that the uplift pile failure is regarded as the soil failure, a rational calculation method was proposed for calculating the deformation, ultimate displacement and shear resistance of piles. The distributions of frictional resistance and the shear displacement along the pile length were obtained with the method. The comparisons were made between the measurement results and the present results. The present theoretical results agree well with the measurement results, with the average difference being less than 12% before failure. The comparisons show that the proposed method is reasonable for uplift design and engineering construction of piles.展开更多
The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with de...The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.展开更多
A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate ...A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.展开更多
To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed a...To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.展开更多
A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while t...A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while the denture base rested on the al- veolar ridge. To investigate the consequences of non-contact conditions, three additional models were generated incorporating a uniform clearance of 0.125 mm, 0.25 mm, and 0.5 mm, respectively. A 100 N static load located at the free end of the prosthesis was applied while the distal portion of the jaw was set fixed. The results show that whilst releasing the ridge almost entirely, the presence of the clearance drastically increased the load on the splinting teeth. A pull-out force on the canine tooth of about 44 N was computed, accompanied by a mesio-distal moment of about 500 N.cm. The combination of which was similar to the tooth extraction maneuver performed by the dentist. In contrast, the second premolar was found to bear a push-in force of almost 115 N. The first molar, though barely solicited in the contact condition, became substantially loaded in non-contact conditions, which validates the choice of sacrificing three teeth to support the denture.展开更多
To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a ...To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method.With the specified loads,the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses.The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall.The methodology is further applied to the thrust chamber of LOX/Methane rocket engines.The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber.Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter c3= 0,and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when c3〉 0.The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall.展开更多
基金Project(50621062) supported by the National Natural Science Foundation of China
文摘Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.
基金supported by Prince Sultan University(Grant No.PSU-CE-TECH-135,2023).
文摘In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
基金Project(05-0686) supported by the Program for New Century Excellent Talents in UniversityProject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, that elastic distortion occurs when the pile is loaded, that the displacement of pile is in accord with that of the soil, and that the uplift pile failure is regarded as the soil failure, a rational calculation method was proposed for calculating the deformation, ultimate displacement and shear resistance of piles. The distributions of frictional resistance and the shear displacement along the pile length were obtained with the method. The comparisons were made between the measurement results and the present results. The present theoretical results agree well with the measurement results, with the average difference being less than 12% before failure. The comparisons show that the proposed method is reasonable for uplift design and engineering construction of piles.
文摘The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.
文摘A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.
基金Project(51278216) supported by the National Natural Science Foundation of ChinaProject(20091341) supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(HF-08-01-2011-240) supported by the Graduates’ Innovation Fund of Huazhong University of Science and Technology,China
文摘To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.
文摘A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while the denture base rested on the al- veolar ridge. To investigate the consequences of non-contact conditions, three additional models were generated incorporating a uniform clearance of 0.125 mm, 0.25 mm, and 0.5 mm, respectively. A 100 N static load located at the free end of the prosthesis was applied while the distal portion of the jaw was set fixed. The results show that whilst releasing the ridge almost entirely, the presence of the clearance drastically increased the load on the splinting teeth. A pull-out force on the canine tooth of about 44 N was computed, accompanied by a mesio-distal moment of about 500 N.cm. The combination of which was similar to the tooth extraction maneuver performed by the dentist. In contrast, the second premolar was found to bear a push-in force of almost 115 N. The first molar, though barely solicited in the contact condition, became substantially loaded in non-contact conditions, which validates the choice of sacrificing three teeth to support the denture.
文摘To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method.With the specified loads,the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses.The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall.The methodology is further applied to the thrust chamber of LOX/Methane rocket engines.The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber.Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter c3= 0,and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when c3〉 0.The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall.