Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex enviro...Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.展开更多
An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based cl...An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based clustering is used for nonparametric clustering of image data set. Then EM algorithm with classification achieved by space-based classification scheme as initial data used to achieve Gaussian mixture modelling of image data set that is utilized for the calculation of soft J value. Original region growing algorithm is then used to segment the image based on the multiscale soft J-images. Experiments show that the new method can overcome the limitations of JSEG successfully.展开更多
This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using A...This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62273083 and No.61973069Natural Science Foundation of Hebei Province under Grant No.F2020501012。
文摘Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.
文摘An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based clustering is used for nonparametric clustering of image data set. Then EM algorithm with classification achieved by space-based classification scheme as initial data used to achieve Gaussian mixture modelling of image data set that is utilized for the calculation of soft J value. Original region growing algorithm is then used to segment the image based on the multiscale soft J-images. Experiments show that the new method can overcome the limitations of JSEG successfully.
基金Supported by the National Natural Science Foundation of China (No. 60872105)the Program for Science & Technology Innovative Research Team of Qing Lan Project in Higher Educational Institutions of Jiangsuthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘This paper improves and presents an advanced method of the voice conversion system based on Gaussian Mixture Models(GMM) models by changing the time-scale of speech.The Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum(STRAIGHT) model is adopted to extract the spectrum features,and the GMM models are trained to generate the conversion function.The spectrum features of a source speech will be converted by the conversion function.The time-scale of speech is changed by extracting the converted features and adding to the spectrum.The conversion voice was evaluated by subjective and objective measurements.The results confirm that the transformed speech not only approximates the characteristics of the target speaker,but also more natural and more intelligible.