The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) c...The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) clusters of the annual ?shing ef fort for Dosidicus gigas of fshore Peru from 2009 to 2012.For a multi-scale analysis, the original commercial ?shery data were tessellated to twelve spatial scales from 6′ to 72′ with an interval of 6′. Under these spatial scales, D. gigas clusters were identi?ed using the Anselin Local Moran's I. Statistics including the number of points, mean CPUE, standard deviation(SD),skewness, kurtosis, area and centroid were calculated for these HH clusters. We found that the z-score of global Moran's I and the number of points for HH clusters follow a power law scaling relationship from2009 to 2012. The mean ef fort and its SD also follow a power law scaling relationship from 2009 to 2012.The skewness follows a linear scaling relationship in 2010 and 2011 but ?uctuates with spatial scale in2009 and 2012; kurtosis follows a logarithmic scale relationship in 2009, 2011 and 2012 but a linear scale relationship in 2010. Cluster area follows a power law scaling relationship in 2010 and 2012, a linear scaling relationship in 2009, and a quadratic scaling relationship in 2011. Based on the peaks of Moran's I indices and the multi-scale analysis, we conclude that the optimum scales are 12′ in 2009 ? 2011 and 6′ in 2012, while the coarsest allowable scales are 48′ in 2009, 2010 and 2012, and 60′ in 2011. Our research provides the best spatial scales for conducting spatial analysis of this pelagic species, and provides a better understanding of scaling behavior for the ?shing ef fort of D. gigas in the of fshore Peruvian waters.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
The dynamical equations of a thin rectangle plate subjected to the friction support boundary and its plane force are established in this paper. The local bifurcation of this system is investigated by using L S method...The dynamical equations of a thin rectangle plate subjected to the friction support boundary and its plane force are established in this paper. The local bifurcation of this system is investigated by using L S method and the singularity theory. The Z 2 bifurcation in non degenerate case is discussed. The local bifurcation diagrams of the unfolding parameters and the bifurcation response characters referred to the physical parameters of the system are obtained by numerical simulation. The results of the computer simulation are coincident with the theoretical analysis and experimental results.展开更多
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金Supported by the National Natural Science Foundation of China(No.41406146)the Laboratory for Marine Fisheries Science and Food Production Processes at Qingdao National Laboratory for Marine Science and Technology of China(No.2017-1A02)the Shanghai Universities First-class Disciplines Project-Fisheries(A)
文摘The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) clusters of the annual ?shing ef fort for Dosidicus gigas of fshore Peru from 2009 to 2012.For a multi-scale analysis, the original commercial ?shery data were tessellated to twelve spatial scales from 6′ to 72′ with an interval of 6′. Under these spatial scales, D. gigas clusters were identi?ed using the Anselin Local Moran's I. Statistics including the number of points, mean CPUE, standard deviation(SD),skewness, kurtosis, area and centroid were calculated for these HH clusters. We found that the z-score of global Moran's I and the number of points for HH clusters follow a power law scaling relationship from2009 to 2012. The mean ef fort and its SD also follow a power law scaling relationship from 2009 to 2012.The skewness follows a linear scaling relationship in 2010 and 2011 but ?uctuates with spatial scale in2009 and 2012; kurtosis follows a logarithmic scale relationship in 2009, 2011 and 2012 but a linear scale relationship in 2010. Cluster area follows a power law scaling relationship in 2010 and 2012, a linear scaling relationship in 2009, and a quadratic scaling relationship in 2011. Based on the peaks of Moran's I indices and the multi-scale analysis, we conclude that the optimum scales are 12′ in 2009 ? 2011 and 6′ in 2012, while the coarsest allowable scales are 48′ in 2009, 2010 and 2012, and 60′ in 2011. Our research provides the best spatial scales for conducting spatial analysis of this pelagic species, and provides a better understanding of scaling behavior for the ?shing ef fort of D. gigas in the of fshore Peruvian waters.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
文摘The dynamical equations of a thin rectangle plate subjected to the friction support boundary and its plane force are established in this paper. The local bifurcation of this system is investigated by using L S method and the singularity theory. The Z 2 bifurcation in non degenerate case is discussed. The local bifurcation diagrams of the unfolding parameters and the bifurcation response characters referred to the physical parameters of the system are obtained by numerical simulation. The results of the computer simulation are coincident with the theoretical analysis and experimental results.