期刊文献+
共找到206篇文章
< 1 2 11 >
每页显示 20 50 100
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
1
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models local discontinuous galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
2
作者 曾展宽 陈艳萍 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期839-854,共16页
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit... In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme. 展开更多
关键词 local discontinuous galerkin method time fractional diffusion equations sta-bility CONVERGENCE
下载PDF
A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS 被引量:9
3
作者 Xiong Yuanbo Long Shuyao +1 位作者 Hu De'an Li Guangyao 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第4期348-356,共9页
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul... Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate. 展开更多
关键词 local petrov-galerkin method moving least square approximation total Lagranian method geometrically nonlinear problems
下载PDF
NUMERICAL ANALYSIS OF MINDLIN SHELL BY MESHLESS LOCAL PETROV-GALERKIN METHOD 被引量:4
4
作者 Di Li Zhongqin Li Shuhui Li 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期160-169,共10页
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many fact... The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results. 展开更多
关键词 meshless methods meshless local petrov-galerkin method moving least square SHELL
下载PDF
LOCAL PETROV-GALERKIN METHOD FOR A THIN PLATE 被引量:2
5
作者 熊渊博 龙述尧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第2期210-218,共9页
The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution varia... The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough. 展开更多
关键词 thin plate meshless local petrov-galerkin method moving least square approximation symmetric weak form of equivalent integration for differential equation
下载PDF
Quasi Ellipsoid Gear Surface Reconstruction Based on Meshless Local Petrov-Galerkin Method and Transmission Characteristic 被引量:1
6
作者 WU Xuemei SHAN Debin LI Guixian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第6期788-792,共5页
Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide techni... Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis. 展开更多
关键词 meshless local petrov-galerkin method moving least square method quasi ellipsoid gear tooth mesh simulation
下载PDF
The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems 被引量:1
7
作者 杨秀丽 戴保东 张伟伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期49-55,共7页
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble... Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless local petrov-galerkin method potential problems
下载PDF
Meshless Local Discontinuous Petrov-Galerkin Method with Application to Blasting Problems
8
作者 强洪夫 高巍然 《Transactions of Tianjin University》 EI CAS 2008年第5期376-383,共8页
A meshless local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge... A meshless local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin (RKDG) method. The solutions are reproduced in a set of overlapped spherical sub-domains, and the test functions are employed from a partition of unity of the local basis functions. There is no need of any traditional non-overlapping mesh either for local approximation purpose or for Galerkin integration purpose in the presented method. The resulting MLDPG method is a meshless, stable, high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM), and it can handle the problems with extremely complicated physics and geometries easily. Three numerical examples of the one-dimensional Sod shock-tube problem, the blast-wave problem and the Woodward-Colella interacting shock wave problem are given. All the numerical results are in good agreement with the closed solutions. The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes. 展开更多
关键词 MLDPG LSWF 网孔结构 建筑特点
下载PDF
Structural Reliability Assessment by a Modified Spectral Stochastic Meshless Local Petrov-Galerkin Method
9
作者 Guang Yih Sheu 《World Journal of Mechanics》 2013年第2期101-111,共11页
This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modifie... This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral stochastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of random mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addition, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately. 展开更多
关键词 SPECTRAL STOCHASTIC MESHLESS local petrov-galerkin method Generalized Polynomial Chaos Expansion First-Order RELIABILITY method STRUCTURAL Failure Probability RELIABILITY Index
下载PDF
一种基于局部间断Galerkin方法的IC互连线电容提取策略
10
作者 朱洪强 邵如梦 +3 位作者 赵郑豪 杨航 汤谨溥 蔡志匡 《微电子学》 CAS 北大核心 2024年第1期127-133,共7页
求解椭圆方程的局部间断Galerkin(LDG)方法具有精度高、并行效率高的优点,且能适用于各种网格。文章提出采用LDG方法来求解IC版图中电势分布函数满足的Laplace方程,从而给出了一个提取互连线电容的新方法。该问题的求解区域需要在矩形... 求解椭圆方程的局部间断Galerkin(LDG)方法具有精度高、并行效率高的优点,且能适用于各种网格。文章提出采用LDG方法来求解IC版图中电势分布函数满足的Laplace方程,从而给出了一个提取互连线电容的新方法。该问题的求解区域需要在矩形区域内部去掉数量不等的导体区域,在这种特殊的计算区域上,通过数值测试验证了LDG方法能达到理论的收敛阶。随着芯片制造工艺的发展,导体尺寸和间距也越来越小,给数值模拟带来新的问题。文章采用倍增网格剖分方法,大幅减小了计算单元数。对包含不同数量和形状导体的七个电路版图,用新方法提取互连线电容,得到的结果与商业工具给出的结果非常接近,表明了新方法的有效性。 展开更多
关键词 局部间断galerkin方法 寄生参数提取 互连线电容 集成电路工艺
下载PDF
Modified Burgers' equation by the local discontinuous Galerkin method 被引量:3
11
作者 张荣培 蔚喜军 赵国忠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期106-110,共5页
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco... In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient. 展开更多
关键词 local discontinuous galerkin method modified Burgers' equation
下载PDF
Local discontinuous Galerkin method for solving Burgers and coupled Burgers equations 被引量:2
12
作者 张荣培 蔚喜军 赵国忠 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期41-46,共6页
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e... In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation. 展开更多
关键词 local discontinuous galerkin method Burgers equation coupled Burgers equation
下载PDF
h-ADAPTIVE ANALYSIS BASED ON MESHLESS LOCAL PETROV-G ALERKIN METHOD WITH B SPLINE WAVELET FOR PLATES AND SHELLS 被引量:1
13
作者 Di Li Zhongqin Lin 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期337-346,共10页
Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as t... Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as the basis of the moving least square method to construct the meshless interpolation function. Multi-resolution analysis is used to decompose the field variables into high and low scales and the high scale component can commonly represent the gradient of the solution according to inherent characteristics of wavelets. The high scale component in the present method can directly detect high gradient regions of the field variables. The developed adaptive refinement scheme has been applied to simulate actual examples, and the effectiveness of the present adaptive refinement scheme has been verified. 展开更多
关键词 meshless methods meshless local petrov-galerkin method multi-resolution analysis adaptive analysis plate and shell
下载PDF
A meshfree-based local Galerkin method with condensation of degree of freedom for elastic dynamic analysis 被引量:1
14
作者 De-An Hu Yi-Gang Wang +2 位作者 Yang-Yang Li Xu Han Yuan-Tong Gu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期92-99,共8页
Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes w... Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes with- out connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approxima- tion. Then local discrete equations can be simplified by con- densation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by as- sembling all local discrete equations and are solved by using the standard implicit Newmark's time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is imple- mented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems. 展开更多
关键词 Meshfree method local galerkin method Moving Kriging interpolation - Condensation of degree of freedom Computational efficiency
下载PDF
New Immersed Boundary Method on the Adaptive Cartesian Grid Applied to the Local Discontinuous Galerkin Method 被引量:1
15
作者 Xu-Jiu Zhang Yong-Sheng Zhu +1 位作者 Ke Yan You-Yun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期176-185,共10页
Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ... Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research. 展开更多
关键词 Immersed boundary method Adaptive Cartesian grid local discontinuous galerkin method RECONSTRUCTION Heat transfer equation
下载PDF
Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations 被引量:1
16
作者 Jie Du Eric Chung Yang Yang 《Communications on Applied Mathematics and Computation》 2022年第1期353-379,共27页
In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materi... In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme. 展开更多
关键词 Maximum-principle-preserving local discontinuous galerkin methods Allen-Cahn equation Conservative exponential integrations
下载PDF
Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System 被引量:1
17
作者 Jiawei Sun Shusen Xie Yulong Xing 《Communications on Applied Mathematics and Computation》 2022年第2期381-416,共36页
Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models s... Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system,the BBM-BBM system,the Bona-Smith system,etc.We propose local discontinuous Galerkin(LDG)methods,with carefully chosen numerical fluxes,to numerically solve this abcd Boussinesq system.The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a,b,c,d.Numerical experiments are shown to test the convergence rates,and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well. 展开更多
关键词 local discontinuous galerkin methods Boussinesq equations Coupled BBM equations Error estimate Numerical fluxes Head-on collision
下载PDF
Local Discontinuous Galerkin Method for the Time-Fractional KdV Equation with the Caputo-Fabrizio Fractional Derivative 被引量:1
18
作者 Huanhuan Wang Xiaoyan Xu +2 位作者 Junmei Dou Ting Zhang Leilei Wei 《Journal of Applied Mathematics and Physics》 2022年第6期1918-1935,共18页
This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discon... This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments. 展开更多
关键词 Caputo-Fabrizio Fractional Derivative local Discontinuous galerkin method STABILITY Error Analysis
下载PDF
A meshless local Petrov–Galerkin method for solving the neutron diffusion equation
19
作者 Shima Tayefi Ali Pazirandeh Mohsen Kheradmand Saadi 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第11期304-322,共19页
The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshl... The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshless local Petrov–Galerkin approach and the moving least squares approximation. This computational procedure consists of two main steps. The first involved applying the moving least squares approximation to construct the shape function based on the problem domain. Then, the obtained shape function was used in the meshless local Petrov–Galerkin method to solve the neutron diffusion equation.Because the meshless method is based on eliminating the mesh-based topologies, the problem domain was represented by a set of arbitrarily distributed nodes. There is no need to use meshes or elements for field variable interpolation. The process of node generation is simply and fully automated, which can save time. As this method is a local weak form, it does not require any background integration cells and all integrations are performed locally over small quadrature domains. To evaluate the proposed method,several problems were considered. The results were compared with those obtained from the analytical solution and a Galerkin finite element method. In addition, the proposed method was used to solve neutronic calculations in thesmall modular reactor. The results were compared with those of the citation code and reference values. The accuracy and precision of the proposed method were acceptable. Additionally, adding the number of nodes and selecting an appropriate weight function improved the performance of the meshless local Petrov–Galerkin method. Therefore, the proposed method represents an accurate and alternative method for calculating core neutronic parameters. 展开更多
关键词 Neutron diffusion equation MESHLESS local Petrov–galerkin(MLPG) Moving least SQUARES approximation(MLSA) MESHLESS methods
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
20
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method local discontinuous galerkin(DG)method
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部