期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
THE LAW OF ITERATED LOGARITHM FOR R/S STATISTICS 被引量:5
1
作者 林正炎 《Acta Mathematica Scientia》 SCIE CSCD 2005年第2期326-330,共5页
A law of iterated logarithm for R/S statistics with the help of the strong approximations of R/S statistics by functions of a Wiener process is shown.
关键词 R/s statistics law of iterated logarithm strong approximation
下载PDF
PRECISE RATES IN THE LAW OF THE ITERATED LOGARITHM FOR R/S STATISTICS 被引量:3
2
作者 Wu Hongmei Wen Jiwei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第4期461-466,共6页
Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t... Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t≤1B(t)-inf0≤t≤sB(t),and B(t) is a Brownian bridge. 展开更多
关键词 law of the iterated logarithm R/s statistics tail probability.
下载PDF
扩散过程的拟必然局部Strassen重对数律 被引量:1
3
作者 刘永宏 高付清 《数学物理学报(A辑)》 CSCD 北大核心 2004年第2期231-237,共7页
应用大偏差 ,得到了扩散过程和重随机积分的拟必然局部 Strassen重对数律 .
关键词 扩散过程 Cr p-容度 大偏差 局部strassen重对数律
下载PDF
Brown运动在容度意义下的局部Strassen重对数律 被引量:2
4
作者 刘永宏 《武汉工业学院学报》 CAS 2002年第3期97-98,122,共3页
利用Brown运动在 (r,p) -容度意义下的大偏差 。
关键词 容度意义 局部strassen重对数律 BROWN运动 大偏差 重对数律 布朗运动 随机过程
下载PDF
扩散过程在Hlder范数下的局部Strassen重对数律
5
作者 刘永宏 高付清 《数学物理学报(A辑)》 CSCD 北大核心 2006年第5期785-793,共9页
在该文中,作者应用扩散过程在Holder范数下的大偏差得到了扩散过程在Holder范数下的局部Strassen重对数律.并且还得到了重It■积分的泛函重对数律.
关键词 扩散过程 局部strassen重对数律 大偏差 HOLDER范数
下载PDF
分数布朗运动的局部Strassen重对数律
6
作者 刘永宏 李东升 +1 位作者 李丰兵 姜淼 《邵阳学院学报(自然科学版)》 2016年第4期19-21,共3页
应用[1]中方法,研究了分数布朗运动局部Strassen重对数律,将[1]的结果推广到了分数布朗运动情形,也将[2]的结果推广到了局部情形。
关键词 分数 布朗运动 平稳增量 局部strassen重对数律
下载PDF
二参数扩散过程的局部Strassen重对数律
7
作者 刘永宏 《湖北大学学报(自然科学版)》 CAS 北大核心 2008年第3期230-234,共5页
应用二参数扩散过程的大偏差得到了二参数扩散过程的局部Strassen重对数律,还得到了二参数重随机积分的局部Strassen重对数律.
关键词 二参数扩散过程 局部strassen重对数律 大偏差
下载PDF
Brown运动在Hlder范数下的拟必然局部Strassen重对数律
8
作者 谢德悦 刘永宏 李晓彬 《桂林电子科技大学学报》 2014年第2期143-146,共4页
为推广Strassen重对数律,研究了Brown运动在抽象Wiener空间下的局部极限性质。应用(r,p)-容度及Hlder范数意义下的Schilder定理,证明了拟必然局部Strassen重对数律,为研究多参数Brown运动的极限性质提供方法。
关键词 BROWN运动 H?lder范数 strassen重对数律
下载PDF
关于二参数Lvy区域的Strassen局部重对数律
9
作者 刘永宏 《湖北大学学报(自然科学版)》 CAS 1999年第3期219-222,共4页
讨论了Lvy区域泛函重对数律 ,利用多参数扩散过程大偏差证明了二参数Lvy区域的Strassen局部重对数律 .
关键词 二参数Levy区域 重对数律 大偏差 泛函
下载PDF
SOME LIMIT PROPERTIES OF LOCAL TIME FOR RANDOM WALK
10
作者 Wen Jiwei Yan Yunliang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第1期87-95,共9页
Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A s... Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A strong approximation of ζ(n) by the local time for Wiener process is presented and the limsup type and liminf-type laws of iterated logarithm of the maximum local time ζ*(n) are obtained. Furthermore,the precise asymptoties in the law of iterated logarithm of ζ*(n) is proved. 展开更多
关键词 local time random walk precise asymptotic law of iterated logarithm strong approximation.
下载PDF
Laws of the Iterated Logarithm for Locally Square Integrable Martingales
11
作者 Fu Qing GAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第2期209-222,共14页
Three types of laws of the iterated logarithm (LIL) for locally square integrable martingales with continuous parameter are considered by a discretization approach. By this approach, a lower bound of LIL and a numbe... Three types of laws of the iterated logarithm (LIL) for locally square integrable martingales with continuous parameter are considered by a discretization approach. By this approach, a lower bound of LIL and a number of FLIL are obtained, and Chung LIL is extended. 展开更多
关键词 locally square integrable martingales law of the iterated logarithm
原文传递
A STRASSEN LAW OF THE ITERATED LOGARITHM FOR PROCESSES WITH INDEPENDENT INCREMENT
12
作者 M.REISSIG K.YAGDJIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1997年第1期1-14,共14页
Let X={X(t),t 0} be a process with independent increments (PII)such that E=0, D X(t)E 2<∞, lim t→∞D X(t)t=1, and there exists a majoring measure G for the jump △X of X . Under these assu... Let X={X(t),t 0} be a process with independent increments (PII)such that E=0, D X(t)E 2<∞, lim t→∞D X(t)t=1, and there exists a majoring measure G for the jump △X of X . Under these assumptions, using rather a direct method, a Strassen's law of the iterated logarithm (Strassen LIL) is established. As some special cases,the Strassen LIL for homogeneous PII and for partial sum process of i.i.d.random variables are comprised. 展开更多
关键词 strassen law of the iterated logarithm process with independent increments stochastic calculus
原文传递
l^p-值Wiener过程增量在H?lder范数下的局部Strassen重对数律
13
作者 刘永宏 刘海国 周霞 《应用数学》 CSCD 北大核心 2020年第1期256-262,共7页
应用l^p-值Wiener过程在Holder范数下的大偏差,研究了l^p-值Wiener过程增量在Holder范数下的局部Strassen重对数律.
关键词 l^p-值Wiener过程 增量 局部strassen重对数律 HOLDER范数
下载PDF
Brown运动增量拟必然局部Strassen重对数律
14
作者 李丰兵 刘永宏 《数学物理学报(A辑)》 CSCD 北大核心 2020年第2期484-491,共8页
该文建立了Brown运动增量的拟必然局部Strassen重对数律.利用这一结果,得到了Brown运动拟必然泛函连续模.
关键词 BROWN运动 增量 局部重对数律 (r p)-容度
下载PDF
Donsker’s Invariance Principle Under the Sub-linear Expectation with an Application to Chung’s Law of the Iterated Logarithm 被引量:19
15
作者 Li-Xin Zhang 《Communications in Mathematics and Statistics》 SCIE 2015年第2期187-214,共28页
We prove a new Donsker’s invariance principle for independent and identically distributed random variables under the sub-linear expectation.As applications,the small deviations and Chung’s law of the iterated logari... We prove a new Donsker’s invariance principle for independent and identically distributed random variables under the sub-linear expectation.As applications,the small deviations and Chung’s law of the iterated logarithm are obtained. 展开更多
关键词 sub-linear expectation Capacity Central limit theorem Invariance principle Chung’s law of the iterated logarithm small deviation
原文传递
Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm 被引量:42
16
作者 ZHANG LiXin 《Science China Mathematics》 SCIE CSCD 2016年第12期2503-2526,共24页
Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper est... Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper establishes the Kolmogorov type exponential inequalities of the partial sums of independent random variables as well as negatively dependent random variables under the sub-linear expectations. As applications of the exponential inequalities, the laws of the iterated logarithm in the sense of non-additive capacities are proved for independent or negatively dependent identically distributed random variables with finite second order moments.For deriving a lower bound of an exponential inequality, a central limit theorem is also proved under the sublinear expectation for random variables with only finite variances. 展开更多
关键词 sub-linear expectation capacity Kolmogorov's exponential inequality negative dependence laws of the iterated logarithm central limit theorem
原文传递
Precise Asymptotics in Chung's Law of the Iterated Logarithm 被引量:2
17
作者 Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期631-646,共16页
Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for ... Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold. 展开更多
关键词 the law of the iterated logarithm Chung's law of the iterated logarithm small deviation i.i.d random variables
原文传递
On the laws of the iterated logarithm under sub-linear expectations 被引量:2
18
作者 Li-Xin Zhang 《Probability, Uncertainty and Quantitative Risk》 2021年第4期409-460,共52页
In this paper,we establish some general forms of the law of the iterated logarithm for independent random variables in a sub-linear expectation space,where the random variables are not necessarily identically distribu... In this paper,we establish some general forms of the law of the iterated logarithm for independent random variables in a sub-linear expectation space,where the random variables are not necessarily identically distributed.Exponential inequalities for the maximum sum of independent random variables and Kolmogorov’s converse exponential inequalities are established as tools for showing the law of the iterated logarithm.As an application,the sufficient and necessary conditions of the law of the iterated logarithm for independent and identically distributed random variables under the sub-linear expectation are obtained.In the paper,it is also shown that if the sub-linear expectation space is rich enough,it will have no continuous capacity.The laws of the iterated logarithm are established without the assumption on the continuity of capacities. 展开更多
关键词 sub-linear expectation Capacity Kolmogorov’s exponential inequality laws of the iterated logarithm
原文传递
Chung's Law of the Iterated Logarithm for Subfractional Brownian Motion 被引量:1
19
作者 Na Na LUAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第6期839-850,共12页
Let XH = {xH(t),t ∈ R+} be a subfractional Brownian motion in Rd. We provide asufficient condition for a self-similar Gaussian process to be strongly locally nondeterministic and show that XH has the property of s... Let XH = {xH(t),t ∈ R+} be a subfractional Brownian motion in Rd. We provide asufficient condition for a self-similar Gaussian process to be strongly locally nondeterministic and show that XH has the property of strong local nondeterminism. Applying this property and a stochastic integral representation of XH, we establish Chung's law of the iterated logarithm for XH. 展开更多
关键词 subfractional Brownian motion self-similar Gaussian processes small ball probability Chung's law of the iterated logarithm
原文传递
A LAW OF THE ITERATED LOGARITHM FOR PROCESSES WITH INDEPENDENT INCREMENTS
20
作者 汪嘉冈 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1994年第1期59-68,共10页
By using the Ito's calculus, a law of the iterated logarithm is established for the processes with independent increments (PⅡ). Let X = {Xt, t ≥ 0} be a PII with Ext=0,V(t)=Ext2<∞and limt∞V(t)=∞ If one of ... By using the Ito's calculus, a law of the iterated logarithm is established for the processes with independent increments (PⅡ). Let X = {Xt, t ≥ 0} be a PII with Ext=0,V(t)=Ext2<∞and limt∞V(t)=∞ If one of the following conditions is satisfied,(2) Suppose the Levy's measure of X may be written as v(dt,ds) = Ft(dx) dV(t) and there is a σ-finite measure G such tnat , 展开更多
关键词 law of the iterated logarithm process with independent increments locally square integrable martingale Ito's calculus
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部